Preface

Thank you for choosing SINEE's EM730 series inverter.

Document No.: 31010214 Release time: June 2021 Version: 100

The EM730 series inverter is a high-reliable and small-sized universal inverter launched by SINEE. EM730 supports three-phase AC asynchronous motors and permanent magnet synchronous motors(EM730 non-standard). They support a variety of drive control technologies, such as the vector VF (VVF) control and speed sensorless vector control (SVC); speed output and torque output; and Wi-Fi access and background software debugging.

Features of the EM730 series inverter:

- Support debugging by the mobile phone APP or monitoring of the inverter status;
- Support Wi-Fi module or serial port access;
- Rich and convenient PC background software functions;
- No need for derating at the ambient temperature of 50 $^{\circ}$ C;
- Support "one-key shuttle" for fast and accurate speed adjustment;
- Perfect protections: Protections against the short circuit, overcurrent, overvoltage, overload, overheating, etc.

Before using the EM730 series inverter, please read this manual carefully and keep it properly.

While connecting the inverter to motor for the first time, please select the motor type (asynchronous or synchronous) correctly and set the motor nameplate parameters: rated power, rated voltage, rated current, rated frequency, rated speed, motor connection, rated power factor, etc.

Since we are committed to continuously improving our products and product data, the data provided by us may be modified without prior notice.

For the latest changes and contents, please visit www.sineedrive.com.

Safety precautions

Safety definition: Safety precautions are divided into the following two categories in this Guide:

Danger: The dangers caused by nonconforming operations may include serious injuries

and even deaths.

minor injuries and equipment damage.

During the installation, commissioning and maintenance, please read this chapter carefully, and follow the safety precautions herein. Our company will not be liable for any injury or loss arising from nonconforming operations.

Precautions

Before installation:

- 1. Do not install the product in the case of water in the package or missing or damaged components found in unpacking!
- 2. Do not install the product in the case of inconsistency between the actual product name and identification on the outer package.

Warning

- 1. Handle the controller with care; otherwise, it may be damaged!
- 2. Never use the inverter damaged or with some parts missing; otherwise, injuries may be caused!
- 3. Do not touch the components of the control system with your hands; otherwise, there is a danger of static damage!

During installation:

- 1. Please install the inverter on a metal retardant object (e.g. metal) and keep it away from combustibles; otherwise, a fire may be caused!
- 2. Do not loosen the fixing bolts of components, especially those with red marks!

Warning

- 1. Never make wire connectors or screws fall into the inverter; otherwise, the inverter may be damaged!
- 2. Install the inverter in a place with little vibration and exposure to direct sunlight.
- 3. When the inverter is installed a relatively closed cabinet or space, pay attention to the installation gap to ensure the effects of heat dissipation.

During wiring:

Danger

- 1. Follow the instructions in this guide, and appoint professional and electrical engineering personnel to complete wiring; otherwise, unexpected dangers may be caused!
- 2. The inverter and power supply must be separated by a circuit breaker (recommendation: greater than or equal to and closest to twice the rated current); otherwise, a fire may be caused!
- 3. Before wiring, make sure that the power supply is in the zero energy status; otherwise, electric shock may be caused!
- 4. Never connect the input power supply to the output terminals (U, V, W) of the inverter. Pay attention to the marks of wiring terminals, and connect wires correctly! Otherwise, the inverter may be damaged!
- 5. Make the inverter grounded correctly and reliably according to the standards; otherwise, electric shock and fire may be caused!

Warning

- 1. Make sure that the lines meet the EMC requirements and local safety standards. For wire diameters, refer to the recommendations. Otherwise, an accident may occur!
- Never connect the braking resistor directly between the DC bus + and terminal. Otherwise, a fire may be caused!
- 3. Tighten the terminals with a screwdriver of specified torque; otherwise, there is a risk of fire.

- 4. Never connect the phase-shifting capacitor and LC/RC noise filter to the output circuit.
- Do not connect the electromagnetic switch and electromagnetic contactor to the output circuit. Otherwise, the overcurrent protection circuit of the inverter will be enabled. In severe cases, the inverter may be subject to internal damage.
- 6. Do not dismantle the connecting cable inside the inverter; otherwise, internal damage may be caused to the inverter.

Before power-on:

ADanger

- Make sure that the voltage level of the input power supply is consistent with the rated voltage of the inverter; and the input terminals (R, S, T) and output terminals (U, V, W) of the power supply are connected correctly. Check whether there is short circuit in the peripheral circuits connected to the inverter and whether all connecting lines are tightened; otherwise, the inverter may be damaged!
- 2. The withstand voltage test has been performed to all parts of the inverter, so it is not necessary to carry it out again. Otherwise, an accident may be caused!

Warning

- 1. The inverter must not be powered on until it is properly covered; otherwise, electric shock may be caused!
- 2. The wiring of all peripheral accessories must be in line with the instructions in this manual. All wires should be connected correctly according to the circuit connections in this manual. Otherwise, an accident may occur!

After power-on:

Never touch the inverter and surrounding circuits with wet hands; otherwise, electric shock may occur! If the indicator is not ON and the keyboard has no response after power-on, immediately turn off the power supply. Never touch the inverter terminals (R, S, T) and the terminals on the terminal block with your hands or screwdriver; otherwise, electric shock may be caused. Upon turning off the power supply, contact our customer service personnel. At the beginning of power-on, the inverter automatically performs a safety test to external strong current circuits. Do not touch the inverter terminals (U, V, W) or motor terminals; otherwise, electric shock may be caused!

4. Do not disassemble any parts of the inverter while it is powered on.

MWarning

- 1. When parameter identification is required, please pay attention to the danger of injury during motor rotation; otherwise, an accident may occur!
- 2. Do not change the parameters set by the inverter manufacturer without permission; otherwise, the inverter may be damaged!

During operation:

ADanger

- 1. Do not touch the cooling fan, radiator and discharge resistor to feel the temperature; otherwise, burns may be caused!
- 2. Non-professional technicians must not test signals when the controller is in operation; otherwise, personal injury or equipment damage may be caused!

Warning

- 1. Prevent any object from falling into the inverter in operation; otherwise, the inverter may be damaged!
- 2. Do not start or stop the inverter by turning on or off the contactor; otherwise, the inverter may be damaged!

During maintenance:

/ Danger

- 1. Never carry out repair and maintenance in the live state; otherwise, electric shock may be caused!
- 2. Maintenance of the inverter must be carried out 10 min after the main circuit is powered off and the display interface of the keyboard is disabled; otherwise, the residual charge in the capacitor will do harm to the human body!
- 3. Personnel without professional training are not allowed to repair and maintain the inverter; otherwise, personal injury or inverter damage may be caused!
- 4. The parameters must be set after the inverter is replaced. Plugs in all interfaces must be operated in the power-off status!
- 5. The synchronous motor generates electricity while rotating. Inverter maintenance and repair must be performed 10 min after the power supply is turned off and the motor stops running; otherwise, electric shock may be caused!

Precautions

Motor insulation inspection

When the motor is used for the first time or after long-term storage or subject to regular inspection, its insulation should be checked to prevent the inverter from damage caused by

failure of the motor winding insulation. During the insulation inspection, the motor must be disconnected from the inverter. It is recommended to use a 500V megohmmeter. The measured insulation resistance must not be less than 5 M Ω .

Thermal protection of motor

If the motor used does not match the rated capacity of the inverter, especially when the rated power of the inverter is greater than that of the motor, the motor must be protected by adjusting the motor protection parameters of the inverter or installing a thermal relay in front of the motor.

Operation above power frequency

This inverter can provide the output frequency of 0.00Hz to 600.00Hz/0.0Hz to 3000.0Hz. When the motor needs to operate above the rated frequency, please consider the capacity of the mechanical device.

About motor heat and noise

Since the inverter outputs PWM waves, containing some harmonics, the temperature rise, noise and vibration of the motor will be slightly more than those in operation at the power frequency.

Presence of voltage-dependent device increasing the power factor on output side

The inverter outputs PWM waves. If there is a capacitor increasing the power factor or voltage-dependent resistor for lightning protection on the output side, the inverter may be subjected to instantaneous overcurrent and even damage. Do not use these devices.

Use beyond rated voltage

The EM730 series open-loop vector inverter should not be used beyond the allowable working voltage range specified in this manual; otherwise, the components inside the inverter are prone to damage. If necessary, use the appropriate step-up or step-down device for voltage transformation.

Lightning impulse protection

The inverter of this series is equipped with a lightning overcurrent protector, which has certain capabilities in self-protection against induced lightning. Where lightning strikes occur frequently, a protective device should be added in front of the inverter.

Altitude and derating

In areas with an altitude of more than 1,000 m, where heat dissipation of the inverter is poor due to thin air, derating is required (derating by 1% per 100 m altitude increase to maximum 3,000 m; for ambient temperature above 50 °C, derating by 1.5% per 1 °C temperature rise to maximum 60 °C). Contact us for technical advice.

Precautions for scrapping of inverter

Burning of the electrolytic capacitors of the main circuit and printed circuit board may result in explosion, and burning of plastic parts may generate toxic gases. Please dispose of the controller as a kind of industrial waste.

Contents

Preface	1
Safety precautions	2
Chapter 1 Overview	8
Chapter 2 Installation	12
Chapter 3 Wiring	19
Chapter 4 Keyboard operations	31
Chapter 5 Trial run	
Chapter 6 Protection/warning solutions	46
Chapter 7 Maintenance of inverter	55
Chapter 8 Select accessories	57
Chapter 7 Function code table	60

Chapter 1 Overview

1.1 Model and Specification of EM730 Series Inverter

• Rated voltage of power supply:

Three-phase AC 340-460V, three-phase/single-phase AC 200V-240V;

• Applicable motor: Three-phase AC asynchronous motor (EM730) and permanent magnet synchronous motor (EM730 non-standard).

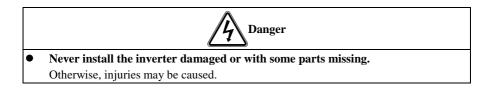
The model and rated output current of EM730 series inverter are as shown in Table 1-1.

Rated voltage of	Madal	Applicable	Heavy-duty	Light-duty
power supply	Model	motor power (kW)	rated output current (A)	rated output current (A)
	EM730-0R4-2B	0.4	2.8	3.2
Single-phase/three-p hase AC	EM730-0R7-2B	0.75	4.8	5.0
$200V \sim 240V$	EM730-1R5-2B	1.5	8	8.5
200 V 240 V	EM730-2R2-2B	2.2	10	11.5
	EM730-0R7-3B	0.75	2.5	3
	EM730-1R5-3B	1.5	4.2	4.6
	EM730-2R2-3B	2.2	5.6	6.5
	EM730-4R0-3B	4.0	9.4	10.5
	EM730-5R5-3B	5.5	13	15.7
	EM730-7R5-3B	7.5	17	20.5
	EM730-011-3B	11	25	28
	EM730-015-3B	15	32	36
Three-phase AC	EM730-018-3B	18.5	38	41.5
$340 \sim 460 \text{V}$	EM730-022-3B	22	45	49
540 400 4	EM730-030-3/3B	30	60	70
	EM730-037-3/3B	37	75	85
	EM730-045-3	45	90	105
	EM730-055-3	55	110	134
	EM730-075-3	75	150	168
	EM730-090-3	90	176	200
	EM730-110-3	110	210	235
	EM730-132-3	132	253	290
	EM730-160-3	160	304	340

Table 1-1 EM730 Series Inverter

- ★ Correct selection of the inverter: The rated output current of the inverter is greater than or equal to the rated current of the motor, taking into account the overload capacity.
- ★ The difference between the rated power of the inverter and that of the motor is usually recommended not to exceed two power segments.
- ★ When a high-power inverter is provided with a low-power motor, the motor parameters must be entered accurately to prevent the motor from damage as a result of overload. The technical specifications of the EM730 series inverter are shown in Table 1-2.

Item		Specification
Power	Rated voltage of	Three-phase 340V-10% to 460V+10%,
	supply power supply	Single-phase/three-phase 200V-10% to 240V+10%;
suppry		50-60Hz \pm 5%; voltage unbalance rate: <3%
	Maximum output	The maximum output voltage is the same as the input power
	voltage	voltage.
	Rated output current	Continuous output of 100% rated current
Output		150% heavy-duty rated current: 60s; 180% heavy-duty rated
	Maximum overload	current: 10s; 200% heavy-duty rated current: 2s
	current	120% light-duty rated current: 60s; 150% light-duty rated
		current: 10s; 180% light-duty rated current: 2s
	Drive mode	V/F control (VVF); speed sensorless vector control (SVC)
	Input mode	Frequency (speed) input, torque input
	Start and stop control	Keyboard, control terminal (two-line control and three-line
	mode	control), communication
Basic	Frequency control	0.00~600.00Hz/0.0~3000.0HZ
control	range	0.00~000.00HZ/0.0~3000.0HZ
functions	Input frequency	Digital input: 0.01Hz/0.1Hz
	resolution	Analog input: 0.1% of maximum frequency
	Speed control range	1:50 (VVF), 1:200 (SVC)
	Speed control	Poted symphronous speed + 0.2%
	accuracy	Rated synchronous speed $\pm 0.2\%$


Table 1-2 Technical Specifications of EM730 Series Inverter

	Acceleration and deceleration time	0.01 s to 600.00 s / 0.1 s to 6,000.0 s / 1 s to 60,000 s
	Voltage/frequency	Rated output voltage: 20% to 100%, adjustable
characteristics		Reference frequency: 1Hz to 600Hz/3,000Hz
		Fixed torque boost curve
	Torque boost	Any V/F curve is acceptable.
		150%/1Hz (VVF)
	Starting torque	150%/0.25Hz (SVC)
	Torque control accuracy	±5% rated torque (SVC)
	Self-adjustment of	When the input voltage changes, the output voltage will
	output voltage	basically remain unchanged.
	Automatic current	Output current is automatically limited to avoid frequent
	limit	overcurrent trips.
		Braking frequency: 0.01 to maximum frequency Braking
	DC braking	time: $0 \sim 30S$
		Braking current: 0% to 150% rated current
	Signal input source	Communication, multi-speed, analog, etc.
	Reference power supply	10V/20mA
	Terminal control power	24V/100mA
T / 1		5-channel digital multi-function input: X1~X5
Input and	Digital input terminal	X5 can be used as the high-speed pulse input (max.
output		100kHZ).
function		2-channel analog inputs:
	Analog input	One (AI1) voltage source: -10 to 10V input;
	terminal	One channel (AI2): 0 to 10V input voltage or 0 to 20mA
		input current optional;
	Digital output	Multi-function output of one open collector and one relay

	terminal	Maximum output current of the collector: 50 mA;
		Relay contact capacity: 250VAC/3A or 30VDC/1A,
		EA-EC: normally open; EB-EC: normally closed
	Analog output	One multi-function analog terminal output
	terminal	M1: 0-10V/0-20mA multi-function analog output terminal
Varboard	LED display	The LED digital tube displays relevant information about the
Keyboard	LED display	inverter.
Drotaction	Protective Function	Short circuit, overcurrent, overvoltage, undervoltage, phase
Protection	Flotective Function	loss, overload, overheat, load loss, external protection, etc.
		Indoor, at an altitude of less than 1 km, free of dust,
	Location	corrosive gases and direct sunlight. When the altitude is
	Location	higher than 1km, it is derated by 1% per 100m. The
		maximum allowable altitude is 3km.
Use		-10 $^\circ \rm C$ to +50 $^\circ \rm C$, 5% to 95%RH (no condensation). When
conditions	Applicable	the ambient temperature exceeds 50 $^\circ$ C, it needs to be derated
conditions	environment	by 3% per 1 $^{\circ}$ temperature rise. The maximum allowable
		ambient temperature is 60 °C.
	Vibration	Less than 0.5g
	Storage environment	-40°C~+70°C
	Installation method	Wall-mounted or installed in the cabinet
Leve	ls of protection	IP20/IP21 (with plastic baffle)
Со	oling method	Forced air cooling

Chapter 2 Installation

2.1 Product check

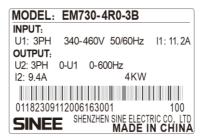
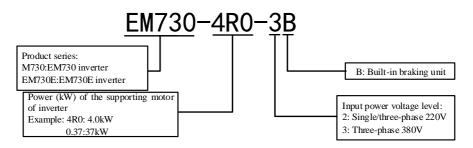
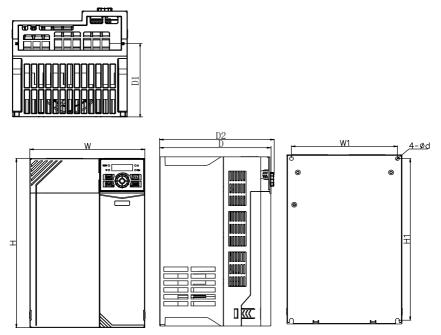

When you get the product, please check it according to Table 2-1.

Table2-1 Check Items

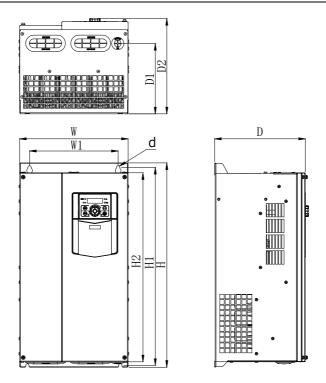

Item to be confirmed	Confirming methods
Check whether the product is consistent	Check the nameplate on the side face of the
with the order.	inverter.
Check whether any part is damaged.	Check the overall appearance for damage caused
	in transportation.
Check whether the fastened parts (e.g.	If necessary, check the product with a
screws) are loose.	screwdriver.

In the case of any defect, contact the agent or our Marketing Department.

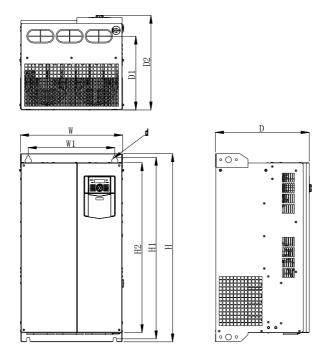
• Nameplate



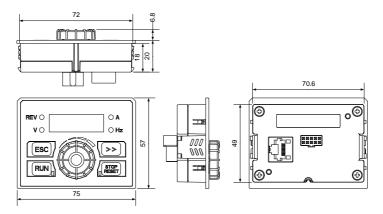
• Description of inverter model



2.2 Outline dimensions and installation dimensions


EM730 series inverters involve 25 specifications, two types of appearance and ten installation sizes, as shown in Fig. 2-1 and Table 2-2.

(a) Appearance of EM730-0R7-3B to EM730-022-3B inverters



(b) Appearance of EM730-030-3B to EM730-075-3 inverters

(c)

Appearance of EM730-090-3 to EM730-160-3 inverters

(d) EM730 keyboard appearance

Fig.2-1 Outline Dimensions of EM730 Series Inverter and Keyboard

Specifications	W	W1	Н	H1	H2	D	D1	D2	d							
EM730-0R4-2B		~ ~	1.40	122		146	- 7	1.50	4.5							
EM730-0R7-2B	75	65	142	132		146	67	152	4.5							
EM730-1R5-2B	93	22	170	1(2		126	05	1.4.1	47							
EM730-2R2-2B	95	82	172	163		136	85	141	4.7							
EM730-0R7-3B	75	(5	140	120		140	(7	152	4.5							
EM730-1R5-3B	75	65	142	132		146	67	152	4.5							
EM730-2R2-3B	93	82	172	163		136	85	141	4.7							
EM730-4R0-3B	95	82	172	105		150	65	141	4.7							
EM730-5R5-3B	109	98	207	196		154	103	160	5.5							
EM730-7R5-3B	109	98	207	190		134	105	100	3.5							
EM730-011-3B	136	105	25 250	240		169	115	174	5.5							
EM730-015-3B	150	123														
EM730-018-3B	190 1	100	100	175	293	200		184	145	190	6.5					
EM730-022-3B		175	293	280		184	145	189	0.5							
EM730-030-3																
EM730-030-3B	245	200	454	440	420	205	156	212	75							
EM730-037-3	243	200	200	200	200	200	200	200	200	4.04	440	40 420	205	150	212	7.5
EM730-037-3B																
EM730-045-3	300	266	524	508	480	229	174	236	9							
EM730-055-3	300	200	524	508	460	229	1/4	230	9							
EM730-075-3	335	286	580	563	536	228	177	235	9							
EM730-090-3	225	286	620	608	570	310	247	217	11							
EM730-110-3	- 335	280	6 630	608	370	510	247	317	11							
EM730-132-3	430	330	770	747	710	311	248	319	13							
EM730-160-3	430	330	//0	/4/	/10	311	240	319	15							

Table 2-2 Outline and Installation Dimensions of EM730 Series Inverter

2.3 Installation Site Requirements and Management

2.3.1 Installation site

The installation site should meet the following conditions:

- 1. The room is well ventilated.
- 2. The ambient temperature should be -10°C to 50°C. When the plastic case is used at the ambient temperature above 40°C, remove the top baffle.
- The controller should be free from high temperature and humidity (less than 90% RH) or rainwater and other liquid droplets.
- 4. Please install the inverter on a fire-retardant object (e.g. metal). Never install it on flammable objects (e.g. wood).
- 5. No direct sunlight.
- 6. There should be no flammable or corrosive gas and liquid.
- 7. There should be no dust, oily dust, floating fibers or metal particles.
- 8. The installation foundation should be secured and vibration-free.

2.3.2 Preventive measures

Take protective measures to the inverter during installation to prevent metal fragments or dust generated in drilling and other processes from falling into the inverter. Remove the protection after installation.

2.4 Installation Direction and Space

The EM730-1R5-3B inverters and above are equipped with the cooling fan for forced air cooling. To ensure good cyclic cooling effects, the inverter must be installed in a vertical direction, and sufficient spaces must be reserved between the inverter and adjacent objects or baffles (walls). Refer to Fig. 2-2.

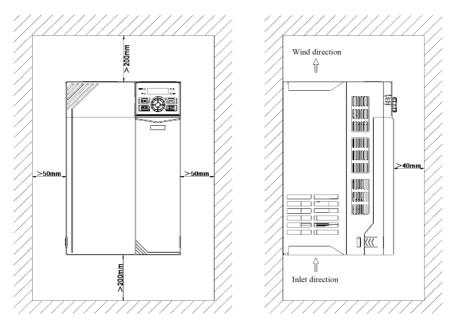
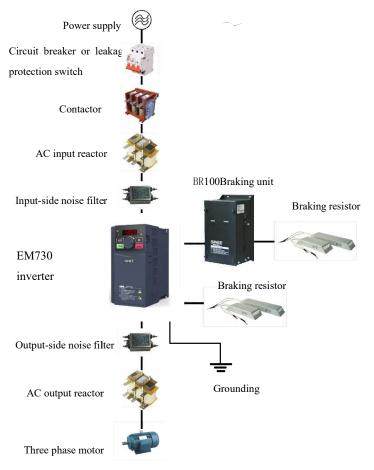
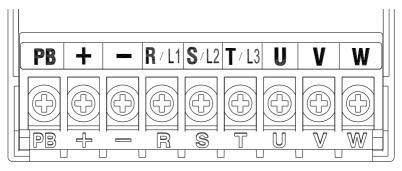


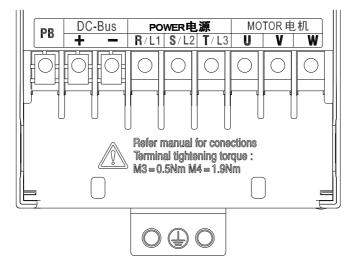
Fig.2-2 Inverter Installation Direction and Space

Chapter 3 Wiring

3.1 Connection of Peripheral Device

The standard connection between the EM730 series inverter and peripheral devices is shown in Fig.3-1.


Fig.3-1 Connection of Inverter and Peripheral Devices

3.2 Wiring of Main Circuit Terminal

3.2.1 Composition of main circuit terminal

a) Schematic Diagram of Terminals (380V, 0.75kW-1.5kW)

b) Schematic Diagram of Terminals (380V, 2.2kW-4.0kW)

Note 1: The 45-160kw inverter has no PB terminal

Note 2: The 132-160kW inverter has a P terminal for external DC reactor

3.2.2 Functions of main circuit terminals

The functions of the main circuit terminals of the EM730 series inverter are shown in the following table. Please connect wires correctly according to the corresponding functions.

Terminal label	Function description
	AC power input terminal, connected to three-phase AC power supply (the
R/L1, S/L2, T/L3	single-phase power input terminal can be connected with any two terminals)
U, V, W	AC output terminal of the inverter, connected to three-phase AC motor
	Positive and negative terminals of the internal DC bus, connected to external
00	braking unit
⊕. PB	Braking resistor terminal, with one end of the braking resistor connected to \oplus and
Ш, РВ	the other end to PB
P,⊕	DC reactor terminal, for the external DC reactor of EM730/EM730E-090-3 and
г,⊕	above
	Grounding terminal, connected to earth

3.2.3 Standard wiring diagram of main circuit

The standard wiring diagram of the main circuit of the EM730 series inverter is shown in Fig. 3-3.

• Wiring of built-in brake unit

Wiring of external brake unit

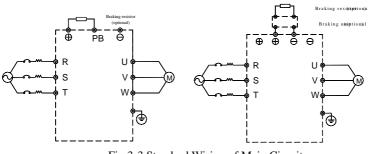


Fig.3-3 Standard Wiring of Main Circuit

3.2.4 Input side wiring of main circuit

The input cable, output cable and inverter itself generates RF interference, which can be reduced by installing noise filters on the input and output sides and shielding the inverter body with an iron box, as shown in Fig. 3-4.

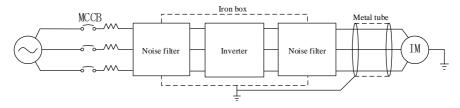


Fig.3-4Solution to RF Interference

3.2.5 Cable and screw dimensions of main circuit

The cable and screw dimensions of the main circuit are shown in EM730 User manual.

3.2.6 Installation and wiring of braking resistor and braking unit

Refer to Chapter 8 for the selection and wiring of the braking resistor and braking unit.

For the inverter with a built-in braking unit, connect the braking resistor between the inverter terminal (+) and PB terminal. For the inverter with no built-in braking unit, connect the terminals (+ and -) of the braking unit to those (+ and -) of the DC bus of the inverter, and the braking resistor to the PB+ and PB- terminals of the braking unit.

3.3 Wiring of Control Circuit Terminal

3.3.1 Composition of control circuit terminal

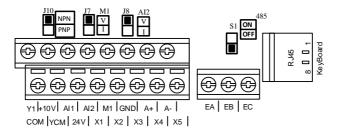


Fig.3-11 Layout of Control Circuit Terminals 1

Note: YCM is the common end of Y1 terminal. If Y1 terminal is not used, the connection plate between YCM and COM may not be connected

3.3.2 Functions and wiring of control circuit terminals

Category	Terminal label	Terminal name	Function description
Power supply	24V	External power	Supply 24V power to external devices, with

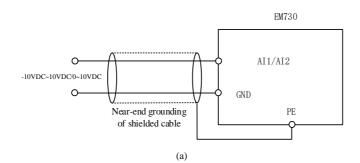
User Guide of EM730 Series Inverter

		supply	the maximum output current of 100mA.
	СОМ	Power grounding terminal	Power grounding terminal of the external power supply, and common side of the digital input terminal
	10V	Analog terminal power supply	Supply 10V power to external devices. Maximum output current: 10.5±0.5V/20mA, usually as the power supply of the external potentiometer
Analog input	GND	Analog power grounding terminal	Grounding terminal of analog input and output
	AI1	Analog voltage input	-10V to 10V, 50kΩ input impedance, bipolar analog voltage input
	AI2	Analog current/voltage input	Current or voltage type Input range: 0/4-20mA or 0-10V
Analog output	M1	Analog voltage/current output	0-10V/0-20mA; output accuracy: ±2%
	X1		Program the corresponding terminals by
	X2		setting function codes, to realize the input
	X3		control of the set functions.
Digital input	X4	Multi-function	The input terminal supports PNP and NPN
port	X5	input terminal	input modes, and the default mode is the NPN input mode. X5 can also be used as the high-frequency pulse input, with the input frequency up to 100kHz.
Multi-function	Y1	Open collector	It can be programmed as the multi-function
digital output	11	output terminal	output terminal.
angitur output	YCM	Common side of Y	The common side YCM of Y terminal and the

User Guide of EM730 Series Inverter

		terminal	common side COM of the digital input
			terminal are independent of each other.
	A+	RS485	positive terminal of RS485 differential signal
Communication	A-	communication terminal	negative terminal of RS485 differential signal
	EA	Delay output	EA-EC: Normally open
Relay output EB	EB	Relay output terminal	EB-EC: Normally closed
	EC	terminar	EB-EC. Normany closed
			For the external operation panel
External	RJ45	5	The upper computer can also be connected
keyboard port	NJ4J		through this port for background software
			debugging.

3.3.3 Wiring of analog input terminal


Wiring of AI1 and AI2 terminals with analog voltage signal:

When the AI2 terminal is in the mode of analog voltage signal input, the switch J8 on the control panel is set to the voltage mode, as shown in Fig. 3-12

When the analog voltage input signal is powered by an external power supply, the wiring of terminals AI1 and AI2 is shown in Fig. 3-12-a.

When the analog voltage input signal is sent by a potentiometer, the terminals AI1 and AI2 are connected as shown in Fig. 3-12-b.

In addition, F02.62 (AI1 input type) and F02.63 (AI2 input type) should be set according to actual needs (0: 0-10V; 1: 4-20mA; 2: 0-20mA; 4: 0-5V).

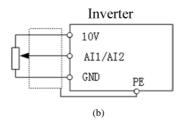


Fig.3-12 AI1/AI2 Terminal Wiring Diagram

Wiring of the input analog current signal of AI2 terminal:

When the AI2 terminal is in the mode of analog current signal input, the switch J8 on the terminal block is set to the current mode.

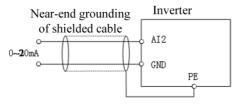
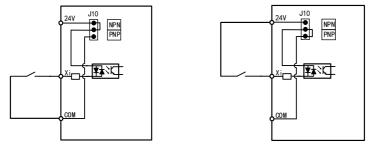
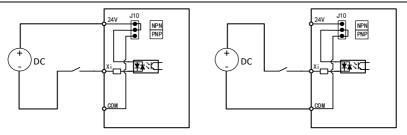



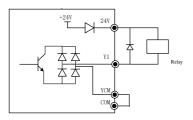
Fig.3-13 Wiring Diagram of External Current Source and AI2 Terminal

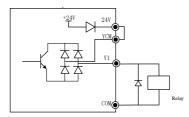
3.3.4 Wiring of multi-function input terminal

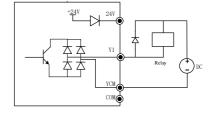

The multi-function input terminals of EM730 series inverters support the access in the NPN or PNP mode. The terminals X1-X5 can be flexibly connected with external devices. The NPN or PNP mode (NPN by default) can be selected via the jumper cap J10 on the control panel. The wiring of the multi-function input terminal in different modes is shown below:

a: Use of internal power supply in NPN mode

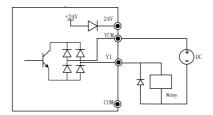
b: Use of internal power supply in PNP mode


User Guide of EM730 Series Inverter


c: Use of external power supply in NPN mode d: Use of external power supply in PNP mode Fig. 3-14 Wiring Diagram of Multi-function Input Terminals

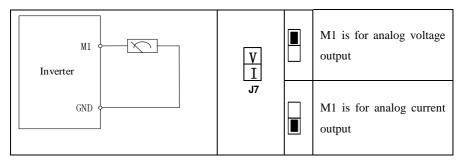

3.3.5 Wiring of multi-function output terminals

The multi-function output terminal Y1 is powered on by the internal 24V power supply of the inverter or an external power supply, as shown in Fig. 3-15:



a: Use of internal power supply NPN

b: Use of external power supply NPN



a: Use of internal power supply PNP Fig.3-15 Wiring of Multi-function Output Terminals

Note: (1) An anti-parallel diode must be included in the relay wire package. The absorption circuit components should be installed at both ends of the coil of the relay or contactor.

3.3.6 Wiring of analog output terminals

The external analog meter connected to the analog output terminal M1 indicates a variety of physical quantities. Choose the output current (0-20mA) or (0-10V) via the jumper cap, M1 corresponding to J7. Set F03.34 as needed (0: 0-10V; 1: 4-20mA; 2: 0-20mA). The jumper cap and terminal wiring is as follows.

3.3.7 Wiring of 485 communication terminals

The communication terminals A+ and A- are the RS485 communication interfaces of the inverter. The online control of the host (PC or PLC controller) and inverter is performed through the connection and communication with the host. The connection of the RS485 and RS485/RS232 adapters to EM730 series inverter is shown in Fig. 3-16, Fig. 3-17 and Fig. 3-18.

• Direct connection of the RS485 terminal of a single inverter to the host for communication:

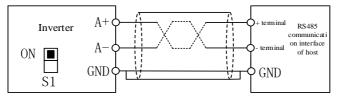
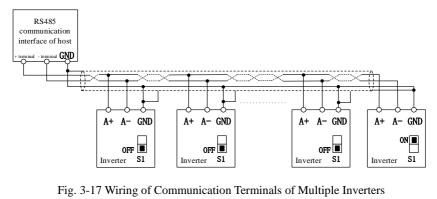
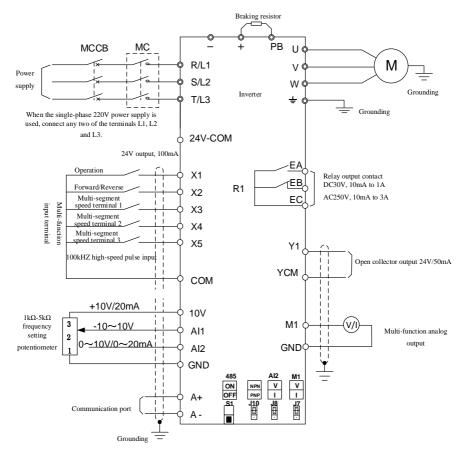



Fig.3-16 Communication Terminal Wiring of Single Inverter

• Connection of the RS485 terminals of multiple inverters to host for communication:



Connection to the host via RS485/RS232 adapter for communication:
 Inverter A+
 A GND
 S1

Fig. 3-18 Communication Terminal Wiring

3.3.8 Precautions for control circuit wiring

- Connect the control circuit connection wires and other wires separately.
- Connect the control circuit terminals EA, EB, EC, and Y1 separately from other control circuit terminals.
- In order to avoid malfunction caused by interference, use the twisted shielded cables in the control circuit. The wiring distance should be less than 50 m.
- Prevent the shield screen from contact with other signal lines and enclosures. The exposed shield screen can be wrapped with insulating tapes.
- It is prohibited to touch the ports and components of the control panel without static electricity protection measures.

3.3.9 Standard Wiring Diagram of Control Circuit

Fig. 3-19 Standard Wiring Diagram of Control Circuit

- It is recommended to use the wires with a diameter of 0.5-1mm² in the control circuit.
- Install the control circuit terminals with the PH0 Phillips screwdriver. The tightening torque should be 0.5N.m.

3.4 Extension wiring of keyboard

- 1) The external keyboard needs to be ordered separately.
- 2) The external keyboard is connected to the RJ45 port via an ordinary network cable (plug:

meeting the EIA/TIA568B standards) prepared by the customer.

3) Connect the RJ45 port of the keyboard to that of the control panel via a network cable. The keyboard extension cable should be no longer than 3m. Then extension cable may be 10m long in the presence of Cat5E wires and good electromagnetic environments.

Chapter 4 KEYBOARD OPERATIONS

4.1 Keyboard Functions

4.1.1 Structure of LED keyboard

The control panel of EM730 series inverter is a pluggable LED keyboard The LED keyboard has one five-digit LED digital display, four operation buttons, one digital potentiometer, and six status and unit indicators. Users can perform parameter setting, status monitoring and start/stop of the inverter via the keyboard.

Fig. 4-1 LED Keyboard

4.1.2 Functions of keys and indicators on LED keyboard

Key/Indicator	Name	Function
	Right	Select the group number and function number of the currently modified function code. Change the monitoring parameters.
ESC	Back	Go back to the previous menu. Cancel the current parameter modification when the menu mode selection level is enabled from the monitoring level.
RUN	Run	When the keyboard control is enabled, press this key to start the inverter.
STOP RESET	Stop/Reset	When the keyboard control is enabled, press this key to stop the inverter. Reset the protection in use.
Ő	Potentiometer/Con firm key	Turn it clockwise to select the function code and menu group or increase the parameter value. Increase the currently valid reference digital input data. Turn it counterclockwise to select the function code and menu group or decrease the parameter value. Decrease the currently valid reference digital input data. Click it to enter the lower-level menu.
		Confirm and save the parameter modification, and

		enable the function code following the current function code.
● ● ● Hz A V	Unit indicator	It is ON when the frequency, current, and voltage are displayed.
REV	Running direction indicator	This indicator is ON during reverse running. It is OFF during forward running. It is ON when a certain frequency is being monitored or displayed.
(Green)	Running indicator	It is ON when the inverter is running, flickering when the inverter is being stopped, and OFF after the inverter is stopped.
(Red)	Protection indicator	When the inverter is in the protection status, this indicator will be ON in red.
and below means that the potentiometer rotates clockwis		

and

counterclockwise.)

4.2 Operation Mode of Keyboard with Digital Tube Display

The LED keyboard menu is divided into the monitoring level (Level 0), menu mode selection level (Level 1), function code selection level (Level 2) and parameter level (Level 3) from low to high. The menu levels mentioned below are represent by numbers.

There are five parameter display modes: menu mode (--R--), used to display all function codes; user-defined mode (--U--), used to display only function codes selected by the user based on the F11 group; non-default mode $(--\mathcal{E}--)$, used to display only the function codes that differ from the default settings;

Protection information display mode $(--\mathcal{E}--)$: display the current protection information; version information mode $(--\mathcal{P}--)$: display software and product serial numbers.

When the keyboard is powered on, the first monitoring parameter of Level 0 is displayed by default. Press the ESC key **ESC** to open the Level 1 menu. Users can turn the potentiometer indicator **in** the keyboard to select different menu modes. The process of menu mode selection is shown in Fig. 4-2.

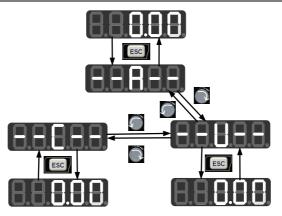


Fig. 4-2 Flowchart of Menu Mode Selection

4.2.1 Full menu mode (---Я---)

In the full menu mode, press the ENTER key it to enter the Level 2 menu and select any function code. Then press the ENTER key to enter the Level 3 menu and view or modify the function code. Except for a few special ones, the function codes needed by general users can be modified.

The entire process from the initial status of power-on to change of the value of the function code F03.28 to 5.28 in the full menu mode is shown in Fig. 4-3.

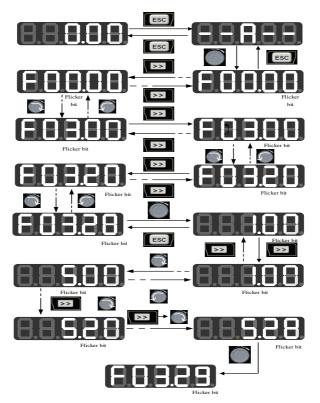


Fig. 4-3 Flowchart from Power-on to F03.28=5.28 Setting

In all menu modes, the user needs to press the ENTER key is to save parameter modifications. Differences after parameter saving are as follows: In the full menu mode, enter the function code following the function code that has been successfully modified. In the non-default mode, enter the non-default function code following the non-default function code that has been successfully modified. In the Level 3 menu, press the ESC key is to abandon parameter modifications.

In the non-default mode, press the ENTER key to enter the Level 2 menu. The first parameter different from the default settings of the inverter will be displayed, starting from F00.00. When the right shift key **EVEN** is pressed in the Level 2 menu, the cursor will not shift.

If the increment or decrement key on the keyboard is pressed, the function group and function code will not be modified, and the non-default function code following and in front of the current function code will be displayed respectively. If the displayed function code is modifiable currently in the Level 3 menu, the lowest bit indicated by the cursor will flicker. In this case, parameters can be modified in the Level 3 menu under the full menu mode. After modification, press the ENTER key is to confirm and save the parameters and enable next non-default parameter.

For example, change F00.03 to 1 and F00.07 to 40.00 in the full menu mode, which are not default values. Then enable the non-default mode. F00.03 will be displayed first. When the potentiometer key in on the keyboard is turned clockwise, F00.07 will be displayed; and when the potentiometer key in on the keyboard is turned counterclockwise, F00.03 will be returned, as shown below:

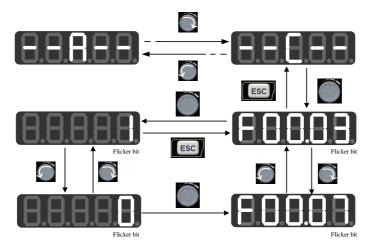


Fig. 4-4 Function Code Modification in Non-default Mode

4.3 Protection Monitoring

When the inverter is in the protection status, you can directly press the right shift key **bold** to switch the current protection type and the output frequency, output current, output voltage, running status and working time during the protection.

4.4 Operation Monitoring

4.4.1 Normal monitoring

In the monitoring status mode 1 of EM730, you can set any function code to be viewed between F12.33 and F12.37. When F12.32=1, the monitoring mode 1 will be enabled. If the Level 0 monitoring menu appears, you can press the right shift key is to switch the monitoring parameters according to the order set for each function code between F12.33 and F12.37. When the inverter changes from the stop status to running status, the monitoring parameter will automatically change from the current value to that indicated by F12.33. When the inverter changes from the running status, the monitoring parameter will automatically change from the to stop status, the monitoring parameter will automatically change from the to that indicated by F12.34.

4.4.2 Editing Mode

Quick change in the monitoring mode:

When F00.04 is set to "0: digital frequency setting F00.07", turn the potentiometer key into directly change the offset;

When F00.04 is set to "8: digital potentiometer", turn the potentiometer key \bigcirc to change the set frequency of F12.42 digital potentiometer. In this case, turn the potentiometer key \bigcirc to enter the editing mode. The value will change from the second digit of the digital tube by default. The digital tube corresponding to the changed digit will flash. Press the right shift key \bigcirc to move to next digit on the right. Press the ESC key \bigcirc to cancel change and return to the original value. Or, press the ENTER key \bigcirc to confirm the change and exit the editing mode. The indicator will not be flicker. Press the right shift key \bigcirc to enable the normal monitoring mode: switch to next monitoring parameter. Fig. 4-6 shows the editing status in the monitoring mode.

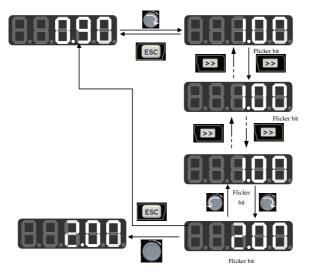


Fig. 4-6 Editing Status in the Monitoring Mode

4.5 Run/Stop

After setting the parameters, press the RUN key **RUN** to enable the normal operation of the inverter, and the STOP/RESET key **RUN** to stop the inverter.

4.6 Other Warning Prompts

4.6.1 P.-ON prompt

The P.-ON prompt will be displayed after power-on initialization.

4.6.2 P.-OFF prompt

When the voltage drops to 250V (with the soft start disconnected), P-OFF will be displayed, and the keyboard can be operated freely to exit the P.-OFF display and display normal information. In case of no keyboard operation within 5s, P-OFF will be displayed again. After the voltage is restored and the soft start is engaged, P.-ON will be displayed again.

4.6.3 SOFT.E warning

If the soft start is not engaged and the inverter is started, the SOFT.E warning will appear. After the voltage is restore and the soft start is engaged, normal operation will be enabled.

Chapter 5 Trial run

5.1 Inverter Commissioning Process

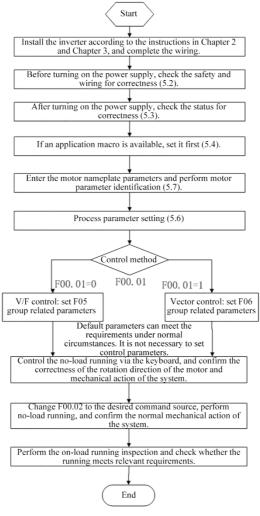


Fig. 5-1 Inverter Commissioning Flowchart

5.2 Confirmation before Power-on

Please confirm the following items before turning on the power supply:

Item to be confirmed	Confirmation content		
	Check whether the input power voltage is consistent with		
	the voltage of the inverter.		
Power wiring	Confirm that the circuit breaker has been connected to the		
confirmation	power supply circuit, and the power cables are correctly		
commination	connected to the input terminals (R, S, T) of the inverter.		
	Make sure that the inverter and motor are properly		
	grounded.		
Motor wiring	Confirm that the motor is correctly connected to the output		
confirmation	terminals (U, V, W) of the inverter, and the motor wiring is		
commination	secured.		
Confirmation of	Make sure that the braking resistor and braking unit are		
braking unit and	connected as shown in Fig. 3-3 (use the dynamic braking		
braking resistor	resistor if necessary during operation).		
Control terminal	Check whether the control terminals of the inverter are		
wiring confirmation	correctly and reliably connected to other controls.		
Control terminal	Make sure that the control terminal circuit of the inverter is		
status confirmation	disconnected to prevent operation upon powering on.		
Mechanical load	Confirm that the machinery is in the no-load state and free		
confirmation	of danger in operation.		

5.3 Inverter Status Confirmation after Power-on

After the power supply is turned on, the control panel (keyboard) of the inverter displays the following information in the normal status.

Status	Display	Note
During	0.00	The digital setting 0.00Hz is displayed by
normal operation	0.00	default.
	Protection code in	The protection code is displayed in the
Protection	character or Exx	protection status. See the protection
	format	measures in Chapter 6.

5.4 Precautions for Application Macro Setting

F16.00 is an industry application macro option. Select the application macro according to the specific application, and press the Enter key to automatically restore default settings. See EM730 User manual for details on application macros.

5.5 Start and Stop Control

Functio n code	Function code name	Parameter description	Default setting	Attribute
	Options of	0: keyboard control		
F00.02	command	1: Terminal control	0	0
	source	2: Communication control		

F00.02=0: keyboard control

The start and stop of the inverter are controlled by the RUN key, STOP key on the keyboard. In the case of no trip protection, press the RUN key to enter the running status. If the green LED indicator above the RUN key is normally ON, it indicates that the inverter is running. If this indicator is flickering, it indicates that the inverter is in the status of deceleration to stop.

F00.02=1: terminal control

The inverter start and stop are controlled by the start and stop control terminals defined by the function code F02.00 to F02.04. Terminal control is dependent on F00.03.

F00.02=2: communication control

The inverter start and stop are controlled by the host through the RS485 communication port.

Function code	Function code name	Parameter description	Default setting	Attribute
F04.00	Start-up method	0: direct start 1: start of speed tracking	0	0

F04.00=0: direct start

The inverter is started at the starting frequency, following the DC braking (not suitable when F04.04=0) and pre-excitation (not suitable when F04.07=0). The starting frequency will change to the set frequency after the holding time.

F04.00=1: start with speed tracking

The inverter is smoothly started at the current rotating frequency of the motor, following the speed tracking.

	ction de	Function code name	Parameter description	Default setting	Attribute
F04	4.19	Stop mode	0: Slow down to stop 1: Free stop	0	0

F04.19=0: deceleration to stop

The motor decelerates to stop according to the set deceleration time [default setting: based on F00.15 (deceleration time 1)].

F04.19=1: free stop

When there is a valid stop command, the inverter will stop output immediately, and the motor will freely coast to stop. The stop time depends on the inertia of the motor and load.

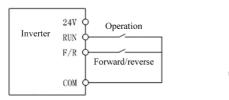
Functio n code	Function code name	Parameter description	Default setting	Attribute
F00.03	Options of terminal control mode	0: terminal RUN (running) and F/R (forward/reverse) 1: terminal RUN (forward) and F/R (reverse) 2: terminal RUN (forward), Xi (stop) and F/R (reverse) 3: terminal RUN (running), Xi (stop) and F/R (forward/reverse)	0	0

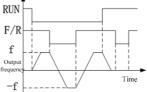
5.5.1 Terminal control of start and stop

Terminal RUN: Xi terminal is set to "1: terminal RUN"

Terminal F/R: Xi terminal is set to "2: running direction F/R"

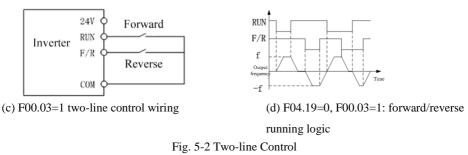
Terminal control can be divided into two types: two-line control and three-line control.


Two-line control:


F00.03=0: the terminal RUN is enabled and the terminal F/R controls forward/reverse running.

Enable/Disable the terminal RUN to control the start and stop of the inverter, and the terminal F/R to control the forward/reverse running. If F00.21 is set to 1 and reverse running is disabled, the F/R terminal will not be available. When the mode of deceleration to stop is selected, the logic diagram is as shown in Fig. 5-2 (b).

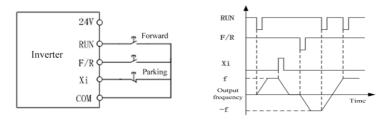
F00.03=1: the terminal RUN controls forward running, and the terminal F/R is in the reverse mode.


Enable/Disable the terminal RUN to control the forward running and stop of the inverter, and the terminal F/R to control the reverse running and stop. When the terminals RUN and F/R are enabled simultaneously, the inverter will be stopped. If reverse running is disabled, the terminal F/R will not be available. When the mode of deceleration to stop is selected, the logic of forward/reverse running is as shown in Fig. 5-2 (d);

(a) Wiring diagram of two-line control (F00.03=0)

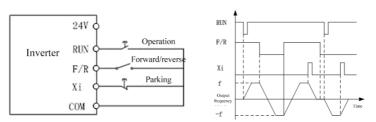
(b) F04.19=0, F00.03=0, run the forward/reverse logic.

When the start/stop value of F00.03 is set to 0 or 1, even if the terminal RUN is available, the inverter can be stopped by pressing the STOP key **first** or sending an external stop command to the terminal. In this case, the inverter will not be in the running status until the terminal RUN is disabled and then enabled.


Three-line control:

F00.03=2: the terminal RUN controls forward running, the terminal Xi is for stop, and the terminal F/R is in the reverse status.

The terminal RUN is normally ON for forward running, and the terminal F/R is normally ON for reverse running, with valid pulse edges. The terminal Xi is normally closed for stop, with the valid level. When the inverter is in the running status, press Xi to stop it. In the case of deceleration to stop (F04.19=0), the logic diagram is as shown in Fig. 5-3 错误!未找到引用源。(b). The terminal Xi is for "three-line running and stop control" as defined by F02.00 to F02.04.


F00.03=3: the terminal RUN is for running, Xi for stop and F/R for forward/reverse control.

The terminal RUN is normally ON for running, with the valid pulse edge, F/R for forward/reverse switching (forward in the OFF status and reverse in the ON status), and Xi is normally OFF for stop, with the valid level. In the case of deceleration to stop (F04.19=0), the logic diagram is as shown in Fig. 5-3(d).

(a) Wiring diagram of three-line control (F00.03=2)

(b) Forward/reverse control logic (F04.19=0, F00.03=2)

(b) Wiring diagram of three-line control (F00.03=3) (d) Forward/reverse running logic (F04.19=0, F00.03=3)

Fig. 5-3 Three-line Control

The three-line control logic of the EM730 series inverter is consistent with the conventional electrical control. The keys and knob switches should be used correctly as shown in the schematic diagram. Otherwise, operation errors may be caused.

5.6 Common Process Parameters of Inverter

Function code	Function code name	Parameter description	Unit	Default setting	Attribute
F00.01	Drive control mode of motor 1	0: V/F control (VVF) 1: Speed sensorless vector control (SVC)		0	0
F00.04	Options of main frequency source A	0: digital frequency setting F00.07 1: AI1 2: AI2 5: high frequency pulse input (X5) 6: Percentage setting of main frequency communication 7: Direct setting of main frequency communication 8: digital potentiometer setting		0	0
F00.07	Digital frequency setting	0.00 to maximum frequency F00.16	Hz	0.00	•
F00.14	Acceleration time 1	0.00~650.00 (F15.13=0)	S	15.00	•
F00.15	Deceleration time 1	0.00~650.00 (F15.13=0)	S	15.00	•
F00.16	Maximum frequency	$1.00 \sim 600.00$	Hz	50.00	0
F00.18	Upper frequency limit	Lower frequency limit F00.19 to maximum frequency F00.16	Hz	50.00	•
F00.19	Lower frequency limit	0.00 to upper frequency limit F00.18	Hz	0.00	•
F00.21	Reverse control	0: Allow forward/reverse running 1: Prohibit reversing		0	0

Note: Common process parameters may also include the input and output terminal function

settings. Refer to the F02 and F03 groups in the function table.

5.7 Motor Parameter Identification

For the better control performance, motor parameters must be identified.

Identification Method	Application	Identification Effect
F01.34=01 Static self-learning of asynchronous motor	It is applied where the motor and load cannot be separated easily and rotary	General
F01.34=11 Static self-learning of synchronous motor	self-learning is not allowed.	General
F01.34=02 Rotary self-learning of asynchronous motor F01.34=12 Rotary self-learning of synchronous motor	It is applied when the motor and load can be separated easily. Before operation, the motor shaft should be separated from the load. The motor under load must not be put into rotary self-learning.	Optimal

• Prior to self-identification, make sure that the motor is stopped; otherwise, self-identification cannot be performed properly.

5.7.1 Parameter identification steps

- Where the motor and load can be separated, the mechanical load and motor should be completely separated in the power-off status.
- After the power-on, set the command source of the inverter to keyboard control (F00.02=0).
- Enter the nameplate parameters of the motor accurately.

Motor	Corresponding Parameter		
Motor 1	F01.00 Motor typeF01.01 Rated power of electric motorF01.02 Rated voltage of motorF01.03 Rated current of motorF01.04 Rated frequency of motorF01.05 Rated speedF01.06: Motor winding connectionF01.05 Rated speed		
Motor 2	F14.00 Motor typeF14.01 Rated power of electric motorF14.02 Rated voltage of motorF14.03 Rated current of motorF14.04 Rated frequency of motorF14.05 Rated speedF14.06: Motor winding connectionF14.05 Rated speed		

• For the asynchronous motor:

Set F01.34=1 for confirmation and press the RUN key. The inverter will start the static self-identification of the motor.

Or, set F01.34=2 and press the RUN key. The inverter will start the rotary self-identification of the motor.

• For the synchronous motor:

Set F01.34=11 and press the RUN key. The inverter will start the static self-identification of the motor.

Or, set F01.34=12 and press the RUN key. The inverter will start the rotary self-identification of the motor.

- It takes about two minutes to complete the self-identification of the motor. Then the system will return to the initial power-on status from the "tune" interface.
- If multiple motors are used in parallel, the rated power and rated current input of the motors should be the sum of power and current of these motors.

If two motors are used alternately, the parameters of the motor 2 in the F14 group need to be set separately, and identified based on F14.34.

Chapter 6 Protection/Warning Solutions

6.1 Protection content

When the inverter is in the abnormal status, the digital tube display will show the corresponding protection code and its parameters, the protection relay and protection output terminal will work, and the inverter will stop the output. In case of protection, the motor will stop rotating normally or slow down until it is stopped. The protection contents and solutions of the EM730 series inverter are shown in Table.

Protection code	Protection Type	Protection Cause	Protection Solution
E0 I	Short circuit protection	 Short circuit to the ground. Inter-phase short circuit Short circuit of the external braking resistor. The acceleration and deceleration time is too short. The inverter module is damaged. There is excessive on-site interference. 	 Check the wiring for short circuits. Properly increase the acceleration and deceleration time. Investigate the cause and reset the controller after implementing the corresponding solutions. Seek technical support.
E02	Instantaneous overcurrent	 The acceleration and deceleration time is too short. In the V/F drive mode, the V/F curve setting is unreasonable. The motor is running during startup. The motor used is beyond the capacity of the inverter or the load is too heavy. Motor parameters are not suitable and need to be identified. The phases on the output side of the inverter are short-circuited. The inverter is damaged. 	 Increase the acceleration and deceleration time. Reasonably set the V/F curve. Enable speed tracking or start DC braking. Use the appropriate motor or inverter. Identify the motor parameters. Check the wiring for short circuits. Seek technical support.
E04	Steady-state overcurrent	The same as E02	The same as E02
<i>E05</i>	Overvoltage	1. The deceleration time is too	1. Increase the deceleration time.

		 short, and the motor has too much regenerated energy. The braking unit or braking resistor forms an open circuit. The braking unit or braking resistor does not match. The power voltage is too high. The energy consumption braking function is not enabled 	 Check the wiring of the braking unit and braking resistor. Use a suitable braking unit/braking resistor. Reduce the power voltage to the specified range. For the model of the built-in braking unit, set F15.30 to 1, and enable the energy consumption braking.
£06	Undervoltage	 The input power supply is subject to phase loss. The terminals of the input power supply are loose. The voltage of the input power supply drops too much. The switch contacts of the input power supply are aging. 	 Check the input power supply and wiring. Tighten the screws of input terminals. Check the air circuit breaker and contactor.
רסש	Input phase loss	 The input power supply is subject to phase loss. The input power supply fluctuates greatly. 	 Check the input power supply. Check the wiring of the input power supply. Check whether the terminal is loose Use a voltage regulator on the input side.
£08	Output phase loss	 The output terminals U, V and W have phase losses. 	 Check the connection between the inverter and motor. Check whether the output terminal is loose. Check whether the motor winding is disconnected.
E09	Inverter overload	 The acceleration and deceleration time is too short. In the V/F drive mode, the V/F curve setting is unreasonable. The load is too heavy. The braking time is too long, the braking intensity is too high, or DC braking is enabled repeatedly. 	 Increase the acceleration and deceleration time. Reasonably set the V/F curve. Use the inverter that matches the load. Reduce the braking time and braking intensity. Do not enable DC braking repeatedly.
E 10	Inverter overheat	 The ambient temperature is too high. The inverter is subject to poor 	 The operating environment of the inverter should meet the specifications.

1			1
		ventilation. 3. The cooling fan fails.	 Improve the ventilation environment and check whether
		5. The cooling fail fails.	the air duct is blocked.
			 Replace the cooling fan.
	D		¥ 0
E 1 1	-	1. There is a logic conflict in	1. Check whether parameters set is
	conflict	parameter settings.	illogical before the protection.
		1. The acceleration and deceleration time is too short.	1. Increase the acceleration and
E 13	Motor overload	2. In the V/F drive mode, the V/F	deceleration time.
6 13	Wotor overload	curve setting is unreasonable.	2. Reasonably set the V/F curve.
		 The load is too heavy. 	3. Use a motor matching the load.
	End and 1	•	
E 14	External	1. The protection terminal of the	1. Check the external device.
	protection	external device acts.	
		1. Interference results in memory	1. Press the STOP/RESET key to
		reading and writing errors.	reset the controller and try again.
E 15	5	2. The internal memory of the controller is read and written	2. For the parameters (e.g. frequency
	protection		setting) to be modified frequently,
		repeatedly, causing damage to	set F10.56 to 11 after debugging.
		the memory.	1 510.02
		1. Communication timeout is	1. F10.03 is set to 0.0 in the
			discontinuous communication
<i>с (</i> с	Communication	enabled in the discontinuous	system.
E 16	error	communication system.	2. Adjust the F10.03 communication
		2. Communication is	timeout.
		disconnected.	3. Check whether the communication
	A1 11 C		cable is disconnected.
	Abnormality of		1. Check whether the inverter
E 17	inverter	The inverter temperature sensor is	temperature sensor is connected
	temperature	disconnected or short-circuited.	properly.
	sensor		2. Seek technical support.
		1. The power supply fails during	
		operation.	1. Stop the inverter before power-off,
		2. The input power supply is	or directly reset the protection.
	The soft start	subject to phase loss.	2. Check the input power supply and
E 18	relay is not	3. The terminals of the input	wiring.
	engaged.	power supply are loose.	3. Tighten the screws of input
		4. The voltage of the input power	terminals.
		supply drops too much.	4. Check the air circuit breaker and
		5. The switch contacts of the	contactor.
	E C	input power supply are aging.	
E 19	Error of current	The detection circuit of the drive	1. Seek technical support.
	detection circuit	board or control board is damaged.	* *

		1 111 1 1 1	
		 The deceleration time is too short. 	 Increase the deceleration time. Check the dynamic brake.
620	Stall protection	2. Error of dynamic brake for	3. Check whether the motor cannot
	-	deceleration.	be stopped as it is driven by
		The load is too heavy.	another load.
			1. Check whether the feedback line
		1. The PID feedback is greater	falls off.
			2. Check whether the sensor is
153	PID feedback	less than the lower limit	working abnormally.
	disconnection	(F09.25), depending on the	3. Adjust the detection value of
		type of the feedback sensor.	feedback disconnection to a
		type of the recould sensor	reasonable level.
		1. Press the STOP/RESET key	
		during parameter	1. Press the STOP/RESET key to
		identification.	reset.
		 The external terminal stops 	2. The external terminal should not
		working (FRS = ON) properly	be operated during parameter
	Self-identificatio	during parameter	identification.
624	n error	identification.	3. Check the connection between the
	il cirol	3. The motor is not connected.	inverter and motor.
		4. The rotary self-learning motor	4. Disconnect the rotary self-learning
		is not disconnected from the	motor from the load.
		load.	5. Check the motor.
		5. The motor fails.	
		1. The motor is not connected or	1. Check the wiring and use the
		does not match the load.	appropriate motor
	Load loss	Load loss occurs.	2、 Check the equipment.
853	protection	3. The parameters of load loss	3、Change the off-load detection
	r	protection are not set	level F07.22 and detection time
		reasonably.	F07.23.
	Up to cumulative	1. The inverter maintenance time	1. Please contact the dealer for
627	power-on time	is up.	technical support.
	1	1. The inverter maintenance time	1. Please contact the dealer for
853	running time	is up.	technical support.
	g unit	·····	1. Check whether the sensor can work
		1. The valid time of the wiring	normally.
ЕЧЧ		detection terminal is too long.	2. Check whether the terminal is
2		2. The invalid time of the wiring	capable of properly judging the
	Wiring protection	detection terminal is too long.	closing and opening.
	protection		1. Check whether the sensor is in the
	Overpressure in	1. The feedback pressure in the	abnormal status.
857	pipeline network	water supply application is too	abnormal status. 2. Check the analog terminal for
	pipenne network	high.	2. Check the analog terminal for normal detection of analog input.
			normal detection of analog input.

			3. Check the external device.
E58	Under-pressure in pipeline network	1. The feedback pressure in the water supply application is too low.	 Check whether the sensor is in the abnormal status. Check the analog terminal for normal detection of analog input. Check the external device.
E 76	Short circuit to the ground	 The output is short-circuited to ground. The inverter module is damaged. 	 Check whether the output cable is broken or whether the motor shell is broken down. Investigate the cause and reset the controller after implementing the corresponding solutions. Seek technical support.

When the inverter is subject to the aforesaid protection, press the STOP/RESET key to reset/clear protection or use the protection resetting terminal to exit the protection status. If the protection has been eliminated, the inverter will return to the function setting status; otherwise, the digital tube will continue to display the current protection information.

The protection number corresponds to the digit behind the letter "E". For example, the digit corresponding to "EXX" is "XX".

For example, E01 corresponds to 1, and E10 corresponds to 10.

The prompt codes and description of inverter operation are as follows:

Prompt Code	Description
P00	The inverter is in the power-on status.
POFF	The inverter is in the power-off status.
	If the soft starter is not engaged, the inverter will show the SOFT.E prompt after startup.
Soft.E	When the voltage is restored and the soft starter is engaged, the inverter will work
	normally.

6.2 Protection analysis

If the motor does not work as expected due to errors in function setting and external control terminal connection after the inverter is powered on, refer to the analysis in this section for the corresponding solutions. If a protection code is displayed, see the solutions in 错误!未找到引 用源。.

6.2.1 Failure in parameter setting of function codes

• The displayed parameters remain unchanged during the forward or reverse spinning of the digital potentiometer.

When the inverter is in the running status, some code parameters cannot be modified without stopping the inverter.

• The displayed parameters can be modified but cannot be stored during the forward or reverse spinning of the digital potentiometer.

Some function codes are locked and cannot be modified.

When F12.02 is set to 1 or 2, parameter changes are restricted. Please set F12.02 to 0. Or, this occurs after the user password is set.

6.2.2 Abnormality of motor rotation

- When the RUN key **RUN** on the keyboard is pressed, the motor does not rotate.
 - Terminal control of the start and stop: Check the setting of the function code F00.02.
 - The free stop terminal FRS and COM are closed: Disconnect the free stop terminal FRS from COM.
 - Switching of the running command to terminal is valid. In this case, the running command is only subject to terminal control. This will be invalid if modified.
 - The status combination of the running command channel is terminal control: Change it to keyboard control.
 - The reference input frequency is set to 0: Increase the reference input frequency.
 - The input power supply is abnormal or the control circuit fails.
- The control terminals RUN and F/R are ON, and the motor does not rotate.
 - Enabling of the stop function by the external terminal is invalid: Check the setting of function code F00.02.
 - Free stop terminal FRS=ON: Change the free stop terminal to FRS=OFF.
 - Control switch failure: Check the control switch.
 - The reference input frequency is set to 0: Increase the reference input frequency.
- The motor can only rotate in one direction.

Reverse running is prohibited: When the reverse running prohibition code F00.21 is set to 1, the inverter is not allowed for reverse running.

• The motor rotates in the opposite direction.

The output phase sequence of the inverter is inconsistent with the input phase sequence of the motor: Exchange any two of the motor wires in the power-off status to change the rotation direction of the motor.

6.2.3 Too long acceleration time of motor

• The current limit level is too low.

When the overcurrent limit setting is valid, and the output current of the inverter reaches the set current limit, the output frequency will remain unchanged during acceleration, until the output current is less than the limit. Then the output frequency will continue to rise. This makes the acceleration time of the motor longer than the set time. Check whether the set current limit of the inverter is too low.

• The set acceleration time is too long. Please check the acceleration time code.

6.2.4 Too long deceleration time of motor

- When energy consumption braking is valid:
 - The resistance of the braking resistor is too high, and the energy consumption braking power is too low, which extends the deceleration time.
 - The set value of braking rate (F15.32) is too small, which extends the deceleration time. Increase the set value of braking rate.
 - The set deceleration time is too long. Check the deceleration time code.
- When the stall protection is valid:
 - When the overvoltage stall protection is enabled, and the DC bus voltage exceeds the voltage of overvoltage stall (F07.07), the output frequency will remains unchanged; and when the DC bus voltage is lower than F07.07, the output frequency will continue to drop, which extends the deceleration time.
 - The set deceleration time is too long. Check the deceleration time code.

6.2.5 Electromagnetic interference and RF interference

• Since the inverter works in the high-frequency switching status, electromagnetic interference and RF interference will be generate to the control device. The following measures can be taken.

- Reduce the carrier frequency (F00.23) of the inverter.
- Install a noise filter on the input side of the inverter.

- Install a noise filter on the output side of the inverter.
- Install a metal tube outside the cables. Install the inverter in a metal casing.
- Make the inverter and motor grounded reliably.
- Connect the main circuit and control circuit separately. Use the shielded cables in the control circuit, and connect them according to the wiring method in Chapter 3.

6.2.6 Action of leakage circuit breaker

• When the inverter is running, the leakage circuit breaker works.

Since the inverter outputs high-frequency PWM signals, a high-frequency leakage current will be generated. Please use the dedicated leakage circuit breaker with the current sensitivity above 30 mA. If an ordinary leakage circuit breaker is used, use a leakage circuit breaker with the current sensitivity above 200 mA and action time of more than 0.1 s.

6.2.7 mechanical vibration

• The inherent frequency of the mechanical system resonates with the carrier frequency of the inverter.

The motor is not faulty, but the mechanical system produces sharp resonant sounds. This is caused by the resonation between the inherent frequency of the mechanical system and carrier frequency of the inverter. Please adjust the carrier frequency (F00.23) to avoid resonation.

• The inherent frequency of the mechanical system resonates with the output frequency of the inverter.

Resonation between the inherent frequency of the mechanical system and output frequency of the inverter will lead to mechanical noise. Please use the vibration suppression function (F05.13), or install the anti-vibration rubber or take other anti-vibration measures on the motor base.

PID control oscillation

The adjustment parameters P, Ti and Td of the PID controller are not set correctly. Please set the PID parameters again.

6.2.8 Motor rotation in the absence of inverter output

- Insufficient DC braking for stop
 - The DC braking torque for stop is too small. Please increase the set value of the DC braking current for stop (F04.21).

The DC braking time for stop is short. Please increase the set value of the DC braking time for stop (F04.22). Under normal circumstances, please give priority to increase in the DC braking current for stop.

6.2.9 Inconsistency between output frequency and set frequency

• The set frequency exceeds the upper frequency limit.

When the set frequency exceeds the set value of the upper frequency limit, the output frequency will be the upper frequency limit. Set the frequency again within the upper frequency limit range; or check whether F00.16, F00.17 and F00.18 are appropriate.

Chapter 7 Maintenance

7.1 Daily Maintenance of Inverter

Depending on the usage, the user needs to check the inverter on a regular basis to eliminate faults and safety hazards. Prior to the inspection, turn off the power supply and wait until the LED indicator of the keyboard is OFF, and then wait for 10min. The check content is shown in Table7-1

Check Item	Check Content	Solution
Screws of main		
circuit terminals	Check whether the screws are	Tighten the screws with a
and control circuit	loose.	screwdriver.
terminals		
Cooling fins	Check whether there is dust or	Purge them with dry compressed
PCB (printed circuit	foreign objects.	air (pressure: $4-6 \text{ kg/cm}^2$).
board)	loreign objects.	an (pressure. 4-0 kg/cm).
Cooling fan	Check it for abnormal noise and vibration. Check whether the cumulative running time is up to 20,000 hours.	Replace the cooling fan
Power components	Check whether there is dust.	Purge them with dry compressed air (pressure: 4-6 kg/cm ²).
Electrolytic capacitor	Check it for color changes, odor and bubbles.	Replace the electrolytic capacitor.

Table 7-1 Content of Regular Inspection

In order to make the inverter work properly in a long time, regular maintenance and replacement must be performed regularly based on the service life of its internal components.

-	-
Name of Part	Standard Replacement Interval (Year)
Cooling fan	2-3 years
Electrolytic capacitor	4-5 years
Printed circuit board	5-8 years

Table 7-2 Replacement Intervals of Inverter Components

The operating conditions for replacement of the inverter components listed in the above table are as follows:

Ambient temperature: Annual average 30°C.

Load factor: Less than 80%.

Operating time: less than 12 hours per day.

7.2 Instructions for Inverter Warranty

Our company will provide warranty services for the inverter in the following cases.

The warranty applies to the inverter body only. Our company is responsible for the warranty of the inverter that fails or is damaged within 18 months during normal operation, and will charge reasonable maintenance fees after 18 months.

Certain maintenance fees will also be charged within one year in the following cases:

- The inverter is damaged due to noncompliance with the instructions in this manual during operation;
- The inverter is damaged due to flood, fire, abnormal voltage, etc.;
- The inverter is damaged as a result of incorrect wiring;
- The inverter is damaged due to unauthorized modification.

Relevant service fees will be calculated based on the actual costs.

If any, the additional agreement shall prevail.

Chapter 8 Select accessories

8.1 Braking Resistor

If the braking performance does not meet the customer requirements, an external braking resistor is needed to release energy in a timely manner.

The power of the braking resistor can be calculated by the following formula:

Resistor power Pb = inverter power P × braking frequency D

D - Braking frequency. This is an estimated value, depending on the load conditions.

Under normal circumstances, D is as follows:

D=10% under ordinary loads

D=5% for occasional braking loads

D = 10% to 15% for elevators

D = 5% to 20% for centrifuges

D = 10% to 20% for oilfield kowtow machines

D = 50% to 60% for unwinding and winding. It should be calculated based on the

system design indicators.

D = 50% to 60% for lifting equipment with a lowering height over 100m

The recommended power and resistance for the braking resistor of the EM730 series inverter are given in the table below. The recommended resistor power is calculated based on the braking rate (10% to 20%). It is for reference only. If the inverter is used in the case of frequent acceleration/deceleration or continuous braking, the power of the braking resistor needs to be increased. The user can change the value according to the load conditions, but within the specified range.

Inverter Model	Motor (kW)	Resistance (Ω)	Resistor Power (W)	Wire (mm ²) Connected to Resistor
EM730-0R4-2B	0.4	≥360	≥200	1
EM730-0R7-2B	0.75	≧180	≧400	1.5
EM730-1R5-2B	1.5	≥180	≥400	1.5
EM730-2R2-2B	2.2	≧90	≧800	2.5
EM730-0R7-3B	0.75	≧360	≥200	1
EM730-1R5-3B	1.5	≥180	≥400	1.5
EM730-2R2-3B	2.2	≧180	≥400	1.5
EM730-4R0-3B	4	≧90	≧800	2.5
EM730-5R5-3B	5.5	≧60	≥1000	4
EM730-7R5-3B	7.5	≧60	≥1000	4
EM730-011-3B	11	≧30	≥2000	6
EM730-015-3B	15	≧30	≥2000	6
EM730-018-3B	18.5	≧30	≥2000	6
EM730-022-3B	22	≥15	≥4000	6
EM730-030-3B	30	≧10	≥4000	6
EM730-037-3B	37	≥10	≧6000	6

8.2 Braking unit

For the EM730 series inverters (EM730-045-3 and above), use our BR100 series braking units (power range: 18.5-160kW). The models of our braking units are as follows.

Model and specification	Application	Minimum Resistance (Ω)	Average Braking Current I _{av} (A)	Peak Current I _{max} (A)	Applicable Inverter Power (kW)
BR100-045	Energy consumption braking	10	45	75	18.5 - 45
BR100-160	Energy consumption braking	6	75	150	55 - 160

★ When BR100-160 works with the minimum resistance, the braking unit can work continuously at the braking frequency D=33%.

In the case of D>33%, intermittent operation will be performed; otherwise, the over-temperature protection will be enabled.

8.2.1 Selection of Connecting Wires

Since all braking units and braking resistors work at high voltage (>400VDC) and in the

Specification	Average Braking	Peak Braking Current	Cross-section (mm ²) of
and model	Current $I_{av}(A)$	I _{max} (A)	Copper-core Cable
BR100-045	45	75	10
BR100-160	75	150	16
BR100-315	120	300	25

discontinuous status, please select appropriate wires. See Chapter 3 for the wiring specifications of the main circuit. Use the cables with the conforming insulation levels and cross-sections.

Flexible cables have higher flexibility. Because cables may be in contact with high-temperature devices, it is recommended to use copper-core and heat-resistant flexible cables or flame-retardant cables. The braking unit should be close to the inverter as much as possible and no more than 2m far away from the inverter. Otherwise, the DC-side cables should be twisted and used with magnetic rings to reduce radiation and inductance.

6.3 Wi-Fi module

Applicable Wi-Fi module and model for EM730 series inverters: EM730-WIFI. The inverter can be controlled by the mobile phone APP, PC background software and the like for quick parameter setting, parameter copying and status monitoring of the inverter.

Installation of the Wi-Fi module: First unplug the keyboard from the inverter and then install the Wi-Fi module to the original keyboard position.

The external schematic diagram of the Wi-Fi module is as follows.

Chapter 9 Function Code Table

9.1 Description of Function Code Table

The function codes of the EM730 series inverter (hereinafter referred to as the "function codes") are divided into 21 groups, and each group contains several function codes. Among them, the F18 group is a monitoring parameter group used to view the inverter status; the F19 group is a protection record group used to view the details of the last three protections; and other groups are parameter setting groups to meet different functional requirements.

F00	Basic function parameter group	P61	F01	Parameter group of motor 1	P64
F02	Input terminal function group	P65	F03	Output terminal function group	P69
F04	Start/stop control parameter group	P71	F05	V/F control parameter group	P73
F06	Vector control parameter group	P75	F07	Protection function setting group	P80
F08	Multi-segment speed and simple PLC	P83	F09	PID function group	P88
F10	Communication function group	P90	F11	User-selected parameter group	P92
F12	Keyboard and display function group	P92	F13	Torque control parameter group	P95
F14	Parameter group of motor 2	P96	F15	Auxiliary function group	P96
F16	Customization function group	P100	F17	Virtual I/O function group	P101
F18	Monitoring parameter group	P101	F19	Protection record group	P103
F27	Winding/unwinding application macro parameter group	P105			

★ Some parameters of the current series are reserved, and their readings are 0. Some options of parameters are reserved and settable, but this may result in abnormal operation of the inverter. Please avoid misuse of such parameters.

9.2 Table of functional parameters

Function code	Function code name	Parameter description	Unit	Default setting	Attribute
F00	Basic function parameter group				
F00.00	Reserved				
E00.01	Drive control mode of motor 1	0: V/F control (VVF)		0	0
F00.01	Drive control mode of motor 1	1: Speed sensorless vector control (SVC)		0	0
		0: keyboard control (LOC/REM indicator: ON)			
F00.03		1: terminal control (LOC/REM indicator: OFF)		0	0
F00.02	Options of command source	2: communication control (LOC/REM indicator:		0	0
		flicker)			
		0: terminal RUN (running) and F/R (forward/reverse)			
		1: terminal RUN (forward) and F/R (reverse)			
		2: terminal RUN (forward), Xi (stop) and F/R			~
F00.03	Options of terminal control mode	(reverse)		0	0
		3: terminal RUN (running), Xi (stop) and F/R			
		(forward/reverse)			
		0: digital frequency setting F00.07			
	Options of main frequency source A	1: AI1			
		2: AI2			
		3: retention			
		4: retention			
F00.04		5: high frequency pulse input (X5)		8	0
		6: main frequency communication setting			
		(percentage)			
		7: main frequency communication setting (direct			
		frequency)			
		8: digital potentiometer setting			
		0: digital frequency setting F00.07			
		1: AI1			
		2: AI2			
		3: retention			
		4: retention			
		5: high frequency pulse input (X5)			
T 000.0 T	Options of auxiliary frequency	6: auxiliary frequency communication setting			~
F00.05	source B	(percentage)		0	0
		7: auxiliary frequency communication setting (direct			
		frequency)			
		8: digital potentiometer setting			
		9: retention			
		10: process PID			
		11: simple PLC			
F00.06	Options of frequency source	0: main frequency source A		0	0

F00.08 Poptions of main and auxiliary frequency source B Provide the second secon						
Base of the section of a scalar products of the section of a scalar products of the section of a scalar products of the section of the secti			1: auxiliary frequency source B			
auxiliary frequency source B 4: switching between main frequency source A and main and auxiliary operation results 5: switching between auxiliary frequency source B and main and auxiliary operation results 6: Auxiliary frequency source B + feedforward calculation (winding application)Hz50.00•F00.07Digital frequency setting0.00 to maximum frequency F00.16Hz50.00•F00.08Options of main and auxiliary operation0: main frequency source A + auxiliary frequency source B 2: larger value of main and auxiliary frequency sources0•F00.08Options of main and auxiliary operation0: relative to he maximum frequency sources0•F00.08Reference options of auxiliary frequency source0: relative to he maximum frequency 1: Relative to main and auxiliary frequency sources0•F00.10Gain of main frequency source 0.0 - 300.0%100.0•F00.11Gain of main frequency source 0.0 - 300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency source 0.0 - 300.0%100.0•F00.11Gain of auxiliary frequency source 0.0 - 300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency source 0.0 - 300.0%100.0•F00.11Analog adjustment of synthetic frequency sources0: synthetic frequency of main and auxiliary channels 1: All * synthetic frequency of main and auxiliary channels%100.0•F00.11Analog adjustment of synthetic frequency frequency<			2: main and auxiliary operation results			
4: switching between main frequency source A and main and auxiliary operation results 5: switching between auxiliary frequency source B and main and auxiliary operation results 6: Auxiliary frequency source B + feedforward calculation (winding application)Image: Source C Constraints C			3: switching between main frequency source A and			
main and auxiliary operation results 5: switching between auxiliary frequency source B and main and auxiliary operation results 6: Auxiliary frequency source B + feedforward calculation (winding application)L50.00F00.07Digital frequency setting0.00 to maximum frequency F00.16Hz50.00•F00.08Options of main and auxiliary operation0: main frequency source A + auxiliary frequency source B0•F00.08Options of main and auxiliary operation1: main frequency source A - auxiliary frequency sources B0•F00.09Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency sources A00F00.10Gain of main frequency source0.~300.0%100.0•F00.12Symbetic gain of main and auxiliary frequency sources0.~300.0%100.0•F00.12Symbetic gain of main and auxiliary frequency sources0.~300.0%100.0•F00.11Gain of auxiliary frequency sources0.~300.0%100.0•F00.12Symbetic gain of main and auxiliary frequency sources0.~300.0%100.0•F00.13Analog adjustment of symbetic frequency channels0. symbetic frequency of main and auxiliary channels-0•F00.14Acceleration time 10.0-65000 (F15.13=0) 0.6-65000 (F15.13=1) 0.6-65000 (F15.13=1) 0.6-65000 (F15.13=1)s15.00•F00.15Deceleratin time 10.0-65000 (F15.13=0) 0.			auxiliary frequency source B			
S: switching between auxiliary frequency source B and main and auxiliary operation results 6: Auxiliary frequency source B + feedforward calculation (winding application)HzSourceSourceF00.07Digital frequency setting0.00 to maximum frequency F00.16Hz50.00•F00.08Options of main and auxiliary operation0: main frequency source A + auxiliary frequency source B 2: larger value of main and auxiliary frequency sourcesImage: Comparison of the compari			4: switching between main frequency source A and			
and main and auxiliary operation results 6: Auxiliary frequency source B + feedforward calculation (winding application)Hz50.00F00.07Digital frequency setting0.00 to maximum frequency F00.16Hz50.00•F00.08Options of main and auxiliary operation0: main frequency source A + auxiliary frequency source B 1: main frequency source A - auxiliary frequency sources0•F00.08Options of main and auxiliary operation0: relative to he maximum frequency sources0•F00.09Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency 1: Relative to main frequency source A0•F00.10Gain of main frequency source0.0~300.0%100.0•F00.11Gain of auxiliary frequency source0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency source0.0~300.0%100.0•F00.13Analog adjustment of synthetic frequency sources0: synthetic frequency of main and auxiliary channels 2: AL2 * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels 0: -65000 (F15.13=0) 065000 (F15.13=1) 065000 (F15.13=2)s15.00•F00.15Deceleration time 10.0-650.00 (F15.13=0) 065000 (F15.13=2)s15.00•F00.16Maximum frequency1.0-600.00/1.0-300.0Hz50.00F			main and auxiliary operation results			
F00.07Digital frequency setting0.00 to maximum frequency P00.16Hz50.00•F00.08Options of main and auxiliary operation0: main frequency source A + auxiliary frequency source B1: main frequency source A - auxiliary frequency source B0••F00.08Options of main and auxiliary operation0: relative to he maximum frequency sources 3: smaller value of main and auxiliary frequency sources0••F00.08Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency sources00•F00.10Gain of auxiliary frequency source0.0~300.0%100.0••F00.11Sinthetic gain of main and auxiliary frequency source0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.13Sinthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.14Analog adjustment of synthetic frequency of main and auxiliary channels 1: All * synthetic frequency of main and auxiliary channels%100.0•F00.14Acceleration time 10.0~650.00 (F15.13=0) 0.6550.00 (F15.13=1) 0.6550.00 (F15.13=2)s15.00•F00.15Deceleration time 10.0~650.00 (F15.13=2) 0.6550.00 (F15.13=2)s15.00•F00.15Maximum frequency1.00~650.00 (F15.13=2) 0.6550.00 (F15.13=2)s15.00•<			5: switching between auxiliary frequency source B			
Image: calculation (winding application)Image: calculation)Image: calculation (winding application)Image: calculation (winding application)Image: calculation)Image: calculation)Image: calculation)Image: calculation)Image: calculation)Image: calculation)Image: calculation) </td <td></td> <td></td> <td>and main and auxiliary operation results</td> <td></td> <td></td> <td></td>			and main and auxiliary operation results			
F00.07Digital frequency setting0.00 to maximum frequency F00.16Hz50.00 \bullet F00.08Options of main and auxiliary operation0: main frequency source A + auxiliary frequency source B 2: larger value of main and auxiliary frequency sources000F00.08Options of main and auxiliary operation0: relative to he maximum frequency sources000F00.09Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency 1: Relative to main frequency source A000F00.10Gain of main frequency source0.0~300.0%100.0••F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0: synthetic frequency of main and auxiliary channels 1: All * synthetic frequency of main and auxiliary channels%100.0•F00.13Analog adjustment of synthetic frequency frequency0: synthetic frequency of main and auxiliary channels00•F00.14Acceleration time 10.00 - 6500.0 (F15.13=0) 0.0 - 6500.0 (F15.13=1) 0.0 - 6500.0 (F15.13=2)s15.00•F00.15Deceleration time 10.0 - 6500.0 (F15.13=2) 0.0 - 6500.0 (F15.13=2)s15.00•F00.16Maximum frequency1.00-600.00(10300.0Hz50.00•			6: Auxiliary frequency source B + feedforward			
F0.08 0: nain frequency source A + auxiliary frequency source B 0 0 F00.08 Options of main and auxiliary operation 0: nain frequency source A + auxiliary frequency source B 0 0 F00.08 Options of main and auxiliary operation 0: relative to main and auxiliary frequency sources 0 0 F00.09 Reference options of auxiliary frequency source B in main and auxiliary operation 0: relative to he maximum frequency 1: Relative to main frequency source A 0 0 F00.10 Gain of main frequency source 0.0~300.0 % 100.0 • F00.12 Synthetic gain of main and auxiliary frequency source 0.0~300.0 % 100.0 • F00.12 Synthetic gain of main and auxiliary frequency sources 0: synthetic frequency of main and auxiliary channels 1: All * synthetic frequency of main and auxiliary channels 0 • F00.13 Analog adjustment of synthetic frequency 0: synthetic frequency of main and auxiliary channels 0 0 • F00.14 Acceleration time 1 0.00 - 6500.0 (F15.13=0) 0.0 - 6500.0 (F15.13=0) s 15.00 • F00.15 Deceleration time 1 0.0 - 6500.0 (F15.13=0) 0.0 - 6500.0 (F15.13=2) s 15.00 •			calculation (winding application)			
F00.08Options of main and auxiliary operationsource B 1: main frequency source A - auxiliary frequency sources B 2: larger value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources 4: main frequency source A0F00.09Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency 1: Relative to main frequency source A00F00.10Gain of main frequency source auxiliary frequency source0.0~300.0%100.0•F00.11Gain of auxiliary frequency source auxiliary frequency source0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Analog adjustment of synthetic frequency frequency0.0~300.0%100.0•F00.13Analog adjustment of synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels0•F00.14Acceleration time 10.00 - 650.00 (F15.13=0) 0.0 - 650.00 (F15.13=1) 0 - 650.00 (F15.13=2)s15.00•F00.15Deceleration time 10.0	F00.07	Digital frequency setting	0.00 to maximum frequency F00.16	Hz	50.00	•
F00.08Options of main and auxiliary operationsource B 1: main frequency source A - auxiliary frequency sources B 2: larger value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources 4: main frequency source A0F00.09Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency 1: Relative to main frequency source A00F00.10Gain of main frequency source auxiliary frequency source0.0~300.0%100.0•F00.11Gain of auxiliary frequency source auxiliary frequency source0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Analog adjustment of synthetic frequency frequency0.0~300.0%100.0•F00.13Analog adjustment of synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels0•F00.14Acceleration time 10.00 - 650.00 (F15.13=0) 0.0 - 650.00 (F15.13=1) 0 - 650.00 (F15.13=2)s15.00•F00.15Deceleration time 10.0			0: main frequency source A + auxiliary frequency			
F00.08Options of main and auxiliary operationsource B 2: larger value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources00F00.09Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency 1: Relative to main frequency source A00F00.10Gain of main frequency source0.0~300.0%100.0•F00.11Gain of auxiliary frequency source0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.13Analog adjustment of synthetic frequency sources0: synthetic frequency of main and auxiliary channels 1: A11 * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels0•F00.14Acceleration time 10.00 - 650.00 (F15.13=0) 0.0 - 650.00 (F15.13=1) 0 - 6500.00 (F15.13=1)s15.00•F00.15Deceleration time 10.00 - 650.00 (F15.13=1) 0 - 6500.00 (F15.13=1)s15.00•F00.15Deceleration time 10.00 - 650.00 (F15.13=1) 0 - 6500.00 (F15.13=2)s15.00•F00.16Maximum frequency1.00-60.00/1.0-300.0.0Hz50.00•						
F00.08Options of main and auxiliary operationsource B 2: larger value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources00F00.09Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency 1: Relative to main frequency source A00F00.10Gain of main frequency source0.0~300.0%100.0•F00.11Gain of auxiliary frequency source0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.13Analog adjustment of synthetic frequency sources0: synthetic frequency of main and auxiliary channels 1: All * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels0•F00.14Acceleration time 10.00 - 650.00 (F15.13=0) 0.0 - 650.00 (F15.13=1) 0 - 6500.00 (F15.13=1)s15.00•F00.15Deceleration time 10.00 - 650.00 (F15.13=0) 0 - 6500.00 (F15.13=1) 0 - 6500.00 (F15.13=2)s15.00•F00.15Maximum frequency1.00-600.00/1.0-300.0Hz50.00•			1: main frequency source A - auxiliary frequency			
F00.08 operationoperation2: larger value of main and auxiliary frequency sources 3: smaller value of main and auxiliary frequency sources00F00.09Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency 1: Relative to main frequency source A00F00.10Gain of main frequency source auxiliary frequency source 00.0~300.0%100.0•F00.11Gain of auxiliary frequency source auxiliary frequency source0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.12Synthetic gain of main and auxiliary frequency sources0.0~300.0%100.0•F00.13Analog adjustment of synthetic frequency frequency0: synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels 0: -65000 (F15.13=0) 065000 (F15.13=1) 065000 (F15.13=1)s15.00•F00.14Acceleration time 10.00 - 6500.0 (F15.13=0) 065000 (F15.13=1) 065000 (F15.13=1)s15.00•F00.15Deceleration time 10.0-6500.0 (F15.13=0) 065000 (F15.13=1) 065000 (F15.13=2)s15.00•F		Options of main and auxiliary				
Image: Sources 3: smaller value of main and auxiliary frequency sourcesImage: Sources 3: smaller value of main and auxiliary frequency sourcesImage: Sources 3: smaller value of main and auxiliary frequency source 3: smaller value of main and auxiliary frequency source B in main and auxiliary operationImage: Source 3: Smaller value of main and auxiliary frequency source AImage: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 0: O^ 300.0Image: Source 3: Smaller value of main and auxiliary frequency source 3: Source 3: Smaller value of main and auxiliary frequency source 3: Swithetic frequency of main and auxiliary frequency source 3: Swithetic frequency of main and auxiliary frequency source 3: Swithetic frequency of main and auxiliary frequency source 3: Swithetic frequency of main and auxiliary frequency source 3: Swithetic frequency of main and auxiliary frequency source 3: Swithetic frequency of main and auxiliary frequency of swithetic frequency of main and auxiliary frequency of swithetic frequency of main	F00.08				0	0
Image: series of the series		operation				
Image: sourcessourcesImage: sourcesImage: source						
Reference options of auxiliary frequency source B in main and auxiliary operation0: relative to he maximum frequency source A0F00.10Gain of main frequency source $0.0 \sim 300.0$ % 100.0 •F00.11Gain of auxiliary frequency source $0.0 \sim 300.0$ % 100.0 •F00.12Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 •F00.12Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 •F00.13Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 •F00.13Analog adjustment of synthetic frequency0: synthetic frequency of main and auxiliary channels $1: AII *$ synthetic frequency of main and auxiliary channels00F00.13Analog adjustment of synthetic frequency0: synthetic frequency of main and auxiliary channels00F00.14Acceleration time 1 $0.0 - 6500.0$ (F15.13=0) $0.0 - 6500.0$ (F15.13=1) $0 6500.0$ (F15.13=1)s15.00•F00.15Deceleration time 1 $0.0 - 6500.0$ (F15.13=0) $0.0 - 6500.0$ (F15.13=1) $0 6500.0$ (F15.13=1)s15.00•F00.15Deceleration time 1 $0.0 - 6500.0$ (F15.13=2)s15.00•F00.16Maximum frequency $1.00 - 600.00/1.0 - 300.0$ Hz50.00C						
F00.09 auxiliary operationfrequency source B in main and auxiliary operation 0° relative to he maximum frequency 1: Relative to main frequency source A 0° 0° F00.10Gain of main frequency source $0.0^{\sim}300.0$ $\%$ 100.0 \bullet F00.11Gain of auxiliary frequency source $0.0^{\sim}300.0$ $\%$ 100.0 \bullet F00.12Synthetic gain of main and auxiliary frequency sources $0.0^{\sim}300.0$ $\%$ 100.0 \bullet F00.13Synthetic gain of main and auxiliary frequency sources $0.0^{\sim}300.0$ $\%$ 100.0 \bullet F00.13Synthetic gain of main and auxiliary frequency sources $0.0^{\sim}300.0$ $\%$ 100.0 \bullet F00.13Analog adjustment of synthetic frequency $0.0^{\sim}300.0$ $main and auxiliarychannels2: A12 * synthetic frequency of main and auxiliarychannels3: retention4: retention5: High frequency pulse (PULSE) * syntheticfrequency of main and auxiliary channels0^{\circ}0^{\circ}F00.14Acceleration time 10.0^{\circ} 650.00 (F15.13=0)0.0^{\circ} 650.00 (F15.13=0)0.0^{\circ} 650.00 (F15.13=0)s15.00\bulletF00.15Deceleration time 10.0^{\circ} 650.00 (F15.13=0)0.0^{\circ} 650.00 (F15.13=1)0^{\circ} 650.00 (F15.13=1)0^{\circ} 650.00 (F15.13=2)s15.00\bulletF00.16Maximum frequency1.00-600.00/1.0-300.0Hz50.00\bullet$		Reference options of auxiliary				
I: Relative to main frequency source AI: Relative to main frequency source AF00.10Gain of main frequency source $0.0 \sim 300.0$ % 100.0 •F00.11Gain of auxiliary frequency source $0.0 \sim 300.0$ % 100.0 •F00.12Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 •F00.12Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 •F00.13Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 •F00.13Analog adjustment of synthetic frequency $0:$ synthetic frequency of main and auxiliary channels $1:$ Al1 * synthetic frequency of main and auxiliary channels $3:$ retention $4:$ retention $5:$ High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels0 \bigcirc F00.14Acceleration time 1 $0.0 \sim 6500.0$ (F15.13=0) $0.0 \sim 6500.0$ (F15.13=1) $0 \sim 6500.0$ (F15.13=1)s 15.00 \bullet F00.15Deceleration time 1 $0.0 \sim 6500.0$ (F15.13=1) $0 \sim 6500.0$ (F15.13=2)s 15.00 \bullet F00.16Maximum frequency $1.00 \sim 60.00.1.0 \sim 300.0$ Hz 50.00 \bigcirc	E00.00		0: relative to he maximum frequency		0	0
F00.10 Gain of main frequency source $0.0 \sim 300.0$ % 100.0 • F00.11 Gain of auxiliary frequency source $0.0 \sim 300.0$ % 100.0 • F00.12 Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 • F00.12 Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 • F00.12 Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ % 100.0 • F00.13 Analog adjustment of synthetic frequency $0:$ synthetic frequency of main and auxiliary channels $1:$ Al1 * synthetic frequency of main and auxiliary channels $0:$ $0:$ $0:$ $0:$ $0:$ F00.14 Anceleration time 1 $0.00 - 650.00$ (F15.13=0) $0:$ $0:$ $0:$ $0:$ $0:$ F00.14 Acceleration time 1 $0.00 - 650.00$ (F15.13=1) s 15.00 $0:$ $0:$ F00.15 Deceleration time 1 $0.0 - 650.00$ (F15.13=2) s 15.00 $0:$ F00.16 Maximum frequency	F00.09		1: Relative to main frequency source A		0	0
F00.11Gain of auxiliary frequency source $0.0 \sim 300.0$ %100.0F00.12Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ %100.0•F00.13Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ %100.0•F00.13Analog adjustment of synthetic frequency0: synthetic frequency of main and auxiliary channels 2: AI2 * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels0OF00.14Acceleration time 1 $0.0 - 650.00$ (F15.13=0) $0 65000$ (F15.13=2)s15.00•F00.15Deceleration time 1 $0.0 - 650.00$ (F15.13=1) $0 65000$ (F15.13=2)s15.00•F00.16Maximum frequency $1.00 - 600.00/1.0 - 3000.0$ Hz 50.00 O	F00 10		0.0~300.0	%	100.0	•
F00.12Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ %100.0F00.12Synthetic gain of main and auxiliary frequency sources $0.0 \sim 300.0$ %100.0 $Analog adjustment of syntheticfrequency0: synthetic frequency of main and auxiliarychannels2: A12 * synthetic frequency of main and auxiliarychannels3: retention4: retention5: High frequency pulse (PULSE) * syntheticfrequency of main and auxiliary channels00F00.130.00 - 650.00 (F15.13=0)0.0 - 6500.0 (F15.13=1)0 - 6500.0 (F15.13=2)s15.00\bulletF00.15Deceleration time 10.00 - 650.00 (F15.13=0)0.0 - 6500.0 (F15.13=1)0 - 6500.0 (F15.13=2)s15.00\bulletF00.16Maximum frequency1.00-600.00/1.0-3000.0Hz50.00O$						•
F00.12 auxiliary frequency sources $0.0 \sim 300.0$ $\%$ 100.0 \bullet $I = 0.0 \sim 300.0$ $0.0 \sim 300.0$ $\%$ 100.0 \bullet $I = 0.0 \sim 300.0$ $0.0 \sim 300.0$ $\%$ 100.0 \bullet $I = 0.0 \sim 300.0$ $0.0 \sim 300.0$ $\%$ 100.0 \bullet $I = 0.0 \sim 300.0$ $0.0 \sim 300.0$ $0.0 \sim 300.0$ $\%$ $0.0 \sim 300.0$ \bullet $I = 0.0 \sim 300.0$ $I = 0.0 \sim 300.0$ $I = 0.0 \sim 300.0$ $0.0 \sim 300.0$ \bullet $I = 0.0 \sim 300.0$ \bullet $I = 0.0 \sim 300.0$ $I = 0.0 \sim 300.0$ $I = 0.0 \sim 10.0 \sim 10.$	100.11		0.0 500.0	70	100.0	•
F00.13Analog adjustment of synthetic frequency0: synthetic frequency of main and auxiliary channels 2: AI2 * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels0F00.14Acceleration time 10.00 - 650.00 (F15.13=0) 0.0 - 650.00 (F15.13=1) 0 - 65000 (F15.13=2)s15.00F00.15Deceleration time 10.00 - 650.00 (F15.13=2)s15.00F00.16Maximum frequency1.00~600.00/1.0~3000.0Hz50.00	F00.12		0.0~300.0	%	100.0	•
F00.13I: AI1 * synthetic frequency of main and auxiliary channels 2: AI2 * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels00F00.14Acceleration time 10.00 - 650.00 (F15.13=0) 0 - 65000 (F15.13=1) 0 - 65000 (F15.13=2)s15.00•F00.15Deceleration time 10.00 - 65000 (F15.13=0) 0 - 65000 (F15.13=2)s15.00•F00.16Maximum frequency1.00~600.00/1.0~3000.0Hz50.00○		auxinary nequency sources	0: synthetic frequency of main and auxiliary channels			
F00.13Analog adjustment of synthetic frequencychannels 2: AI2 * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels00F00.14Acceleration time 10.00 - 650.00 (F15.13=0) 0 - 65000 (F15.13=1) 0 - 65000 (F15.13=2)s15.00•F00.15Deceleration time 10.00 - 650.00 (F15.13=0) 0 - 65000 (F15.13=2)s15.00•F00.16Maximum frequency1.00~600.00/1.0~3000.0Hz50.00○						
F00.13Analog adjustment of synthetic frequency2: A12 * synthetic frequency of main and auxiliary channels 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels00F00.14Acceleration time 10.00 - 650.00 (F15.13=0) 0.0 - 650.00 (F15.13=1) 0 - 65000 (F15.13=2)s15.00•F00.15Deceleration time 10.00 - 650.00 (F15.13=0) 0.0 - 65000 (F15.13=2)s15.00•F00.15Deceleration time 10.00 - 65000 (F15.13=0) 0.0 - 65000 (F15.13=2)s15.00•F00.16Maximum frequency1.00~600.00/1.0~3000.0Hz50.00○						
Analog adjustment of synthetic frequency channels 0 0 3: retention 3: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels 0 0 F00.14 Acceleration time 1 0.00 - 650.00 (F15.13=0) 0 - 65000 (F15.13=1) 0 - 65000 (F15.13=2) s 15.00 • F00.15 Deceleration time 1 0.00 - 650.00 (F15.13=2) s 15.00 • F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 O						
frequency 3: retention 4: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels	E00.12	Analog adjustment of synthetic			0	0
4: retention 4: retention 5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels	F00.15	frequency			0	0
5: High frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels Image: Constraint of the presentation of						
F00.14 Acceleration time 1 0.00 - 650.00 (F15.13=0) 0.0 - 6500.0 (F15.13=1) 0 - 65000 (F15.13=2) s 15.00 • F00.15 Deceleration time 1 0.00 - 650.00 (F15.13=0) 0.00 - 6500.0 (F15.13=2) s 15.00 • F00.15 Deceleration time 1 0.00 - 6500.0 (F15.13=0) 0.0 - 65000 (F15.13=2) s 15.00 • F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 ○						
F00.14 Acceleration time 1 0.00 - 650.00 (F15.13=0) 0.0 - 6500.0 (F15.13=1) 0 - 65000 (F15.13=2) s 15.00 • F00.15 Deceleration time 1 0.0 - 650.00 (F15.13=0) 0.0 - 6500.0 (F15.13=0) s 15.00 • F00.15 Deceleration time 1 0.0 - 6500.0 (F15.13=0) 0.0 - 6500.0 (F15.13=2) s 15.00 • F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 ○						
F00.14 Acceleration time 1 0.0 - 6500.0 (F15.13=1) 0 - 65000 (F15.13=2) s 15.00 • F00.15 Deceleration time 1 0.00 - 650.00 (F15.13=0) 0.0 - 6500.0 (F15.13=1) 0 - 65000 (F15.13=2) s 15.00 • F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 ○						
0 - 65000 (F15.13=2) 0 F00.15 Deceleration time 1 0.00 - 650.00 (F15.13=0) s 15.00 F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 O	F00 1/	A 1 1 1 1 1			15.00	
F00.15 Deceleration time 1 0.00 - 650.00 (F15.13=0) 0.0 - 65000 (F15.13=1) 0 - 65000 (F15.13=2) s 15.00 • F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 O	F00.14	Acceleration time 1		s	15.00	٠
F00.15 Deceleration time 1 0.0 - 6500.0 (F15.13=1) 0 - 65000 (F15.13=2) s 15.00 • F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 O						
0 - 65000 (F15.13=2) Hz 50.00 O F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 O						
F00.16 Maximum frequency 1.00~600.00/1.0~3000.0 Hz 50.00 O	F00.15	Deceleration time 1		s	15.00	•
F00.17 Options of upper frequency limit 0: set by F00.18 0 O				Hz		~
	F00.17	Options of upper frequency limit	0: set by F00.18		0	0

r	-	I			
	control	1: AI1			
		2: AI2			
		3: retention			
		4: retention			
		5: high frequency pulse input (X5)			
		6: Communication setting (percentage)			
		7: Communication setting (direct frequency)			
F00.10		Lower frequency limit F00.19 to maximum frequency	Hz	50.00	-
F00.18	Upper frequency limit	F00.16	HZ	50.00	•
F00.19	Lower frequency limit	0.00 to upper frequency limit F00.18	Hz	0.00	•
-		0: consistent direction			
F00.20	Running direction	1: opposite direction		0	•
		0: Allow forward/reverse running			
F00.21	Reverse control	1: Prohibit reversing		0	0
	Duration of forward and reverse	-			
F00.22	dead zone	$0.00 \sim 650.00$	s	0.00	•
		1.0-16.0 (rated power of the inverter: 0.75-4.00kW)			
		1.0-10.0 (rated power of the inverter: 5.50-7.50kW)		4.0 (0.75	
F00.23	Carrier frequency	1.0 - 8.0 (rated power of inverter 11.00 - 45.00kW)	kHz	and	•
100.25	Carrier nequency	1.0 - 4.0 (rated power of inverter 11.00 - 45.00kW)	KIIZ	below)	•
		1.0-3.0 (rated power of inverter: 110.00 and above)		/2.0	
		0: Invalid			
F00.24	Automatic adjustment of carrier	1: valid 1		1	0
F00.24	frequency	2: Valid 2		1	0
	N				
F00.25	Noise suppression of carrier	0: Invalid		0	0
	frequency	1: valid			
F00.26	Noise suppression tone	20~200	Hz	40	۲
F00.27	Noise suppression intensity	10~150	Hz	100	•
F00.28	Options of motor parameter group	0: parameter group of motor 1		0	0
	-F E	1: parameter group of motor 2		-)
F00.29	User password	0 - 65535		0	0
F00.31	Frequency resolution	0: 0.01Hz		0	0
100.51		1: 0.1Hz (speed unit: 10rpm)		U	0
F00.25		0: 380V		0	0
F00.35	Power supply voltage selection	1: 440V		0	0
F01	Parameter group of motor 1				
		0: ordinary asynchronous motor			
F01.00	Motor type	1: variable-frequency asynchronous motor		0	0
		2: permanent magnet synchronous motor			
				Depending	
F01.01	Rated power of electric motor	0.10~650.00	kW	on the	0
	Rated power of electric motor			motor type	
F01.02	Rated voltage of motor	50~2000	v	Depending	0
				·r6)

				on the	
				motor type	
		$0.01 \pm (00.00)$ (anti-dimension of matters $< 75 \text{ bW}$)		Depending	
F01.03	Rated current of motor	0.01 to 600.00 (rated power of motor: \leq 75 kW)	А	on the	0
		0.1 to 6000.0 (rated power of motor: > 75 kW)		motor type	
				Depending	
F01.04	Rated frequency of motor	0.01~600.00	Hz	on the	0
				motor type	
				Depending	
F01.05	Rated speed	1~60000	rpm	on the	0
				motor type	
		0.Y		Depending	
F01.06	Motor winding connection	0:Y		on the	0
		1:Δ		motor type	
				Depending	
F01.07	Rated power factor of motor	0.600~1.000		on the	0
				motor type	
				Depending	
F01.08	Motor efficiency	30.0~100.0	%	on the	0
				motor type	
	Stator resistance of asynchronous motor			Depending	
F01.09		1-60000 (rated power of motor: \leq 75 kW)	mΩ	on the	0
		0.1-6000.0 (rated power of motor: > 75kW)		motor type	
	Rotor resistance of asynchronous motor			Depending	
F01.10		1-60000 (rated power of motor: \leq 75 kW)	mΩ	on the	0
		0.1-6000.0 (rated power of motor: > 75kW)		motor type	
			mH	Depending	
F01.11	Leakage inductance of	0.01 to 600.00 (rated power of motor: \leq 75 kW)		on the	0
	asynchronous motor	0.001 to 60.000 (rated power of motor: > 75 kW)		motor type	
				Depending	
F01.12	Mutual inductance of	0.1 to 6000.0 (rated power of motor: \leq 75 kW)	mH	on the	0
	asynchronous motor	0.01 to 600.00 (rated power of motor: > 75 kW)		motor type	_
				Depending	
F01.13	No-load excitation current of	0.01 to 600.00 (rated power of motor: \leq 75 kW)	А	on the	0
	asynchronous motor	0.1 to 6000.0 (rated power of motor: > 75 kW)		motor type	_
	Flux weakening coefficient 1 of				
F01.14	asynchronous motor	10.00 - 100.00	%	87.00	0
	Flux weakening coefficient 2 of				
F01.15	asynchronous motor	10.00 - 100.00	%	80.00	0
	Flux weakening coefficient 3 f				
F01.16	asynchronous motor	10.00 - 100.00	%	75.00	0
	Flux weakening coefficient 4 f				
F01.17	asynchronous motor	10.00 - 100.00	%	72.00	0
	asynchronous motor				

F01.18	Flux weakening coefficient 5 f asynchronous motor	10.00 - 100.00	%	70.00	0
F01.19	Stator resistance of synchronous motor	1-60000 (rated power of motor: ≤75kW) 0.1 to 6000.0 (rated power of motor: > 75 kW)	mΩ	Depending on the motor type	0
F01.20	d-axis inductance of synchronous motor	0.01 to 600.00 rated power of motor: ≤ 75 kW) 0.001 to 60.000 (rated power of motor: > 75 kW)	mH	Depending on the motor type	0
F01.21	q-axis inductance of synchronous motor	0.01~600.00 (rated power of motor: ≤ 75 kW) 0.001~60.000 (rated power of motor: > 75kW)	mH	Depending on the motor type	0
F01.22	Counter electromotive force of synchronous motor	10.0-2000.0 (counter electromotive force of rated speed)	v	Depending on the motor type	0
F01.23	Initial electrical angle of synchronous motor	0.0-359.9 (valid for synchronous motor)			0
F01.34	Motor parameter self-learning	00: No operation 01: static self-learning of asynchronous motor 02: rotation self-learning of asynchronous motor 03: inertia self-learning of asynchronous motor 11: static self-learning of synchronous motor 12: rotary self-learning of synchronous motor 13: encoder self-learning of synchronous motor		00	0
F02	Input terminal function group	is choose set realing of synemoticus notor			
F02.00	Options of X1 digital input function	0: no function 1: terminal running (RUN)		1	0
F02.01	Options of X2 digital input function	2: running direction (F/R) 11: multi-segment speed terminal 1		2	0
F02.02	Options of X3 digital input function	12: multi-segment speed terminal 213: multi-segment speed terminal 3		11	0
F02.03	Options of X4 digital input function	14: multi-segment speed terminal 415: multi-segment PID terminal 1		12	0
F02.04	Options of X5 digital input function	16: multi-segment PID terminal 217: multi-segment torque terminal 1		13	0
F02.07	Options of AI1 digital input function	18: multi-segment torque terminal 219: acceleration and deceleration time terminal 1		0	0
F02.08	Options of A12 digital input function	 20: acceleration and deceleration time terminal 2 21: Acceleration and deceleration prohibition 22: operation pause 23: External protection input 24: Switching of RUN command to keyboard 25: switching of RUN command to communication 26: Frequency source switching 		0	0

	27: clearing of regular running time		
	28: speed control/torque control switching		
	29: torque control prohibition		
	30: motor 1/motor 2 switching		
	31: resetting of simple PLC status (running from the first		
	segment, with the running time cleared)		
	32: simple PLC time pause (keep running at current		
	segment)		
	33: retention		
	34: counter input (≤250Hz)		
	35: high-speed count input (≤100kHz, only valid for X5)		
	36: count clearing		
	37: length counter input (≤250Hz)		
	38: High-speed length counting input (≤100kHz, only		
	valid for X5)		
	39: Reset length (clear by meter)		
	40: Pulse input (≤100kHz, only valid for X5)		
	41: process PID pause		
	42: process PID integral pause		
	43: PID parameter switching		
	44: PID positive/negative switching		
	45: stop and DC braking		
	46: DC braking at stop		
	47: immediate DC braking		
	48: fastest deceleration to stop		
	49: retention		
	50: external stop		
	51: switching of main frequency source to digital		
	frequency setting		
	52: switching of main frequency source to AI1		
	53: Switching of main frequency source to AI2		
	54: retention		
	55: Switching of main frequency source to		
	high-frequency pulse input		
	56: switching of main frequency source to		
	communication setting		
	57: inverter enabling		
	68: Disable reversal		
	69: prohibit reversing		
	121: External material cutoff signal		
	122: Wiring detection signal		
	123: Brake reset terminal		

		D7	D6	D5	D4	D3	D2	D1	D0		00000	0
		*	*	*	X5	X4	X3	X2	X1			
	Positive/negative logic 1 of digital	0: positive logic, valid in the closed state/invalid in the							in the			
F02.15	input terminal	open	state									
		e logic	, invalio	l in the	closed s	tate/vali	d in the					
		open	state									
		D7	D6	D5	D4	D3	D2	D1	D0		00	0
		*	*	*	*	*	*	AI2	AI1			
F02.16	Positive/negative logic 2 of digital	0: positive logic, valid in the closed state/invalid in the										
F02.10	input terminal	open	state									
		1: Ne	gative	e logic	, invalio	l in the	closed s	tate/vali	d in the			
		open	state									
F02.17	Filtering times of digital input	0-100	0 . n	o filter	ing: n:	samplir	ng everv	n me			2	0
102.17	terminal	0-100	-100, 0: no filtering; n: sampling every n ms								2	Ŭ
F02.18	X1 valid delay time	0.000	-30.0	00						s	0.000	•
F02.19	X1 invalid delay time	0.000	-30.0	00						s	0.000	•
F02.20	X2 valid delay time	0.000	-30.0	00						s	0.000	•
F02.21	X2 invalid delay time	0.000	-30.0	00						s	0.000	•
F02.22	X3 valid delay time	0.000	-30.0	00						s	0.000	•
F02.23	X3 invalid delay time	0.000	0.000-30.000						S	0.000	•	
F02.24	X4 valid delay time	0.000	-30.0	00						s	0.000	•
F02.25	X4 invalid delay time	0.000	-30.0	00						s	0.000	٠
F02.26	Minimum input pulse frequency	0.00 t	o ma	ximun	n input j	oulse fr	equency	F02.28		kHz	0.00	•
F02.27	Minimum input setting	-100.	0 - +2	100.0						%	0.0	•
F02.28	Maximum input pulse frequency	0.01~	100.0	00						kHz	50.00	•
F02.29	Maximum input setting	-100.	0 - +	100.0						%	100.0	•
F02.30	Pulse input filtering time	0.00 -	10.0	0						s	0.10	•
		Ones	place	: AI1								
		0: ana	ılog iı	nput								
		1: dig	ital ir	nput (0	below	1V, 1 a	bove 3V	, the san	ne as last			
F02.31	Options of analog input function	time under 1-3V)								00B	0	
1		Tens J	place	: AI2								
		0: analog input										
		1: dig	ital ir	1put (tl	ne same	as abo	ve)					

0.001	Juide of EM / 30 Series Inv				
		Ones place: Options of AI1 curve			
		0: curve 1			
		1: curve 2			
		2: curve 3			
502.22		3: curve 4		105	0
F02.32	Options of analog input curve	Tens place: AI2 curve selection		10D	0
		0: curve 1			
		1: curve 2			
		2: curve 3			
		3: curve 4			
F02.33	Minimum input of curve 1	0.00 - F02.35	v	0.10	•
F02.34	Minimum input setting of curve 1	-100.0 - +100.0	%	0.0	•
F02.35	Maximum input of curve 1	F02.33~10.00V	v	9.90	•
F02.36	Maximum input setting of curve 1	-100.0 - +100.0	%	100.0	•
F02.37	Minimum input of curve 2	-10.00V~F02.39	v	0.10	•
F02.38	Minimum input setting of curve 2	-100.0 - +100.0	%	0.0	•
F02.39	Maximum input of curve 2	F02.37~10.00V	v	9.90	•
F02.40	Maximum input setting of curve 2	-100.0 - +100.0	%	100.0	•
F02.41	Minimum input of curve 3	0.00V - F02.43	V	0.10	•
F02.42	Minimum input setting of curve 3	-100.0 - +100.0	%	0.0	•
102.42	Input of inflection point 1 of curve		70	0.0	•
F02.43	3	F02.41 - F02.45	v	2.50	•
	Input setting of inflection point 1				
F02.44	of curve 3	-100.0 - +100.0	%	25.0	•
	Input of inflection point 2 of curve				
F02.45	3	F02.43 - F02.47	v	7.50	•
	Input setting of inflection point 2				
F02.46	of curve 3	-100.0 - +100.0	%	75.0	•
F02.47	Maximum input of curve 3	F02.45 - 10.00	v	9.90	
F02.48	Maximum input of curve 3	-100.0 - +100.0	* %	100.0	•
F02.49	Minimum input of curve 4	-100.0 - +100.0 -10.00 - F02.51	⁷⁰ V	-9.90	
F02.49	-			-100.0	•
F02.50	Minimum input setting of curve 4	-100.0 - +100.0	%	-100.0	•
F02.51	Input of inflection point 1 of curve 4	F02.49 - F02.53	v	-5.00	•
F02.52	Input setting of inflection point 1	-100.0 - +100.0	%	-50.0	•
	of curve 4				
F02.53	Input of inflection point 2 of curve	F02.51 - F02.55	v	5.00	•
	4				
F02.54	Input setting of inflection point 2	-100.0 - +100.0	%	50.0	•
F02	of curve 4	F02 52 10 00		0.00	
F02.55	Maximum input of curve 4	F02.53 - 10.00	V	9.90	•
F02.56	Maximum input setting of curve 4	-100.0 - +100.0	%	100.0	•

F02.57	AI1 filtering time	0.00 - 10.00	s	0.10	•
F02.58	, , , , , , , , , , , , , , , , , , ,	0.00 - 10.00	s		•
F02.61		2 - 50		2	0
	,	0: 0~10V		0.10 0.10 2 0 0 1 7	~
F02.62	Selection of analog input AI1 type	3: -10~10V			0
1 02.02	Selection of analog input All type	4: 0~5V		Ū	0
		0: 0~10V			
		1: 4~20mA		0.10 2 0 0 0 1	
F02.63	Selection of analog input AI2 type	2: 0~20mA		0	
		4: 0~5V			
	Selection of AI2 current input	0: 500Ω			
F02.66	-	1: 250Ω		0	0
F03	*			l.	
F03.00		0: no output		1	0
105.00	Options of 11 output function	1: inverter running (RUN)		1	0
		2: up to output frequency (FAR)			
	No No AI2 filtering time AI2 filtering time AD hysteresis code AD hysteresis code Selection of analog input AI1 type Selection of analog input AI2 type Selection of AI2 current input impedance Output terminal function group O0 Options of Y1 output function	3: output frequency detection FDT1			
		4: output frequency detection FDT2			
		5: reverse running (REV)			
		6: jog			
		7: inverter protection			
		8: inverter ready to run (READY)			
		9: reach the upper frequency limit			
		10: reach the lower frequency limit			
		11: valid current limit			
		12: valid overvoltage stall			
		13: complete simple PLC cycle			
		14: reach the set count value			
F03.02	Options of R1 output function	15: reach the specified count value		7	0
105.02	(EA-EB-EC)	16: Length reached (in meters)		/	0
		17: motor overload pre-alarm			
		18: inverter overheat pre-alarm			
		19: reach the upper limit of PID feedback			
		20: reach the lower limit of PID feedback			
		21: analog level detection ADT1			
		22: analog level detection ADT2			
		24: undervoltage state			
		26: up to the set time			
		27: zero-speed running			
		38: off-load			
		47: PLC output			
		67: Brake control			
		68: Material cutoff detection output			
	1	oo. material cutoff delection output			

					limit (pu										
					limit (pu										
					-	ılse, inva									
					-	ılse, inva	lid in JO	DG)							
		73: o	itput o	overcu	irrent										
		D7	D6	D5	D4	D3	D2	D1	D0		0*0	0			
F03.05	Options of output signal type	*	*	*	*	*	R1	*	Y1		00				
F03.05	Options of output signal type	0: lev	el												
		1: sin	gle pu	lse											
		D7	D6	D5	D4	D3	D2	D1	D0			_			
		*	*	*	*	*	R1	*	Y1		0*0	0			
	Positive/negative logic of digital	0: pos	sitive l	ogic.	valid in	the close	ed state/	invalid	in the						
F03.06	output	open													
				logic	invalic	l in the c	losed st	ate/valid	in the						
		open	-	logie	, mvanc	i in the e	10500 50	ite, vano	i ili tile						
		D7	D6	D5	D4	D3	D2	D1	D0						
	Output status control in jog	Di	D0	05	D4	05	FDT	DI	D0		00000	0			
F03.08		*	*	*	REV	FDT2	1	FAR	RUN		00000	0			
		0: val	id in j	oggin	g										
		1: inv	alid ir	n jogg	ing										
F03.09	Y1 valid delay time	0.000	~30.	000						s	0.000	•			
F03.10	Y1 invalid delay time	0.000	~30.	000						s	0.000	•			
F03.13	R1 valid delay time	0.000	\sim 30.	000						s	0.000	•			
F03.14	R1 invalid delay time	0.000	\sim 30.	000						s	0.000	•			
F03.17	Single pulse time of Y1 output	0.001	~30.	000						s	0.250	•			
	a											-			
F03.19	Single pulse time of R1 output	0.001	~30.	000						s	0.250	•			
		0: rur	ning f	reque	ency (ab	solute va	lue)								
		1: set	frequ	ency (absolut	e value)									
		2: out	put to	rque (absolut	e value)									
		3: set	torqu	e (abs	olute va	lue)									
		3: set torque (absolute value)4: output current													
F03.21	Options of analog output M1		-								0	0			
		5: Output voltage 6: bus voltage													
		7: output power													
		8: AI1 9: AI2													
					or e1	. inn+ /		0/							
		12: H	ign-fr	equen	cy pulse	e input (v	with 100	170							

		corresp	onding	to 100.0)0kHz)							
		13: Co	mmunic	ation se	tting 1							
		14: cou	int valu	e								
		15: len	15: length value									
		16: PII	O output	t								
		18: PII	18: PID feedback									
		19: PII	9: PID setting									
		30: Co	mmunic	ation se	tting 2							
F03.27	M1 output bias	-100.0	~ 100.0							%	0.0	•
F03.28	M1 output gain	-10.000	0~10.0	00							1.000	•
		D7	D6	D5	D4	D3	D2	D1	D0			
	Control logic options of PLC	*	*	*	*	*	R1	*	Y1		0*0	0
F03.31	output terminal	0. 0							••			
		0: Outp										
		1: no o	-									
	Selection of analog output M1	0: 0~10V										
F03.34		1: 4~20mA							0	0		
	type	2:0~20	0mA									

F04	Start/stop cont	rol parameter group			
F04.00	Start-up method	0: direct start 1: start of speed tracking		0	0
F04.01	Start frequency	0.00 - 10.00	Hz	0.00	Ο
F04.02	Start frequency hold time	0.00-60.00, 0.00 is invalid	s	0.00	0
F04.03	Starting current of DC braking	$0.0 \sim 100.0 \ (100.0 = \text{Rated current of motor})$	%	100.0	0
F04.04	Starting time of DC braking	0.00~30.00 0.00: invalid	S	0.00	0
F04.06	Pre-excitation current	50.0-500.0 (100.0 = no-load current)	%	100.0	0
F04.07	Pre-excitation time	0.00 - 10.00	s	0.10	0
F04.08	Speed tracking mode	Ones place: Tracking start frequency 0: maximum frequency 1: stop frequency 2: power frequency Tens place: Selection of search direction 0: search only in command direction		0	0

		1. Count in the count of the distribution if the count is a state			
		1: Search in the opposite direction if the speed cannot be			
		found in the command direction			
	Deceleration				
F04.10	time of speed	0.1 - 20.0	S	2.0	0
	tracking				
F04.11	Speed tracking	30.0-150.0 (100.0 = rated current of inverter)	%	50.0	0
	current				Ŭ
	Speed tracking				
F04.12	compensation	0.00 - 10.00		1.00	Ο
	gain				
	Acceleration	0: linear acceleration and deceleration			
F04.14	and	1: acceleration and deceleration of continuous S curve		0	0
104.14	deceleration	2: acceleration and deceleration of intermittent S curve		0	0
	mode				
	Starting time	0.00~30.00(F15.13=0)			
F04.15	of S curve in	0.0~300.0(F15.13=1)	s	1.00	•
	acceleration	0~3000(F15.13=2)			
	Ending time of	0.00~30.00(F15.13=0)			
F04.16	S curve in	0.0~300.0(F15.13=1)	s	1.00	•
	acceleration	0~3000(F15.13=2)			
	Starting time	0.00~30.00(F15.13=0)			
F04.17	of S curve in	0.0~300.0(F15.13=1)	s	1.00	•
	deceleration	0~3000(F15.13=2)			
	Ending time of	0.00~30.00(F15.13=0)			
F04.18	S curve in	0.0~300.0(F15.13=1)	s	1.00	•
	deceleration	0~3000(F15.13=2)			
	~ .	0: slow down to stop			
F04.19	Stop mode	1: free stop		0	0
	Starting				
	frequency of				
F04.20	DC braking in	0.00Hz to maximum frequency F00.16	Hz	0.00	0
	stop				
	DC braking				
F04.21	current in stop	$0.0 \sim 100.0 \ (100.0 = \text{Rated current of motor})$	%	50.0%	0
	DC braking				
F04.22	time in stop	0.00~30.00 0.00: invalid	S	0.00	0
	Demagnetizati				
F04.23	on time for DC	0.00 - 30.00	s	0.50	0
	braking in stop		~		
	orading in stop	1			1

F04.24	Flux braking	100-150 (100: no flux braking)		100	0
	gain				_
	Start mode				
F04.26	after	0: start according to F04.00 setting mode		0	0
F04.24 g F04.26 F F04.27 F F04.27 F F04.29 F F04.29 F F04.20 F F04.20 F F04.20 F F04.20 F F05 N F05.00 S F05.01 F F05.02 N F05.02 N F05.02 N F F	protection/free	1: start of speed tracking			
F04.24 F04.26 F04.27 F04.29 F04.30 F05.00 F05.00 F05.01 F05.01 F05.02 F05.03	stop				
	Second				
F04 27	confirmation	0: Not required for confirmation		0	0
104.27	of terminal	1: to be confirmed		0	0
	start command				
	Zero speed				
F04.29	check	0.00 - 5.00	Hz	0.25	•
	frequency				
	Initial				
	magnetic pole				
F04.30 search mode of synchronous motor F05 V/F control pa	- ·	0: Invalid		0	
	1: Mode 1		0		
	-				
E05					
105	V/F control pa	0: straight line V/F			
F05		1: multi-point broken line V/F			
		2: 1.3-power V/F			
		3: 1.7-power V/F			
	V/F curve	4: square V/F		0	0
105.00	setting	5: VF complete separation mode (Ud = 0, Uq = K * t =		0	
		voltage of separation voltage source)			
		6: VF semi-separation mode (Ud = 0, Uq = K * t = F/Fe *			
		2 * voltage of separation voltage source)			
	Frequency	2 (Shage of Separation (Shage Source)			
F05.01		0.00 - F05.03	Hz	0.50	•
	multi-point VF				
	L L				
1	Voltage point				
F05.02	Voltage point V1 of	$0.0 \sim 100.0 \ (100.0 = \text{Rated voltage})$	%	1.0	•
F05.02	U A	$0.0 \sim 100.0 \ (100.0 = \text{Rated voltage})$	%	1.0	•
F05.02	V1 of	$0.0 \sim 100.0 \ (100.0 = \text{Rated voltage})$	%	1.0	•
	V1 of multi-point VF	0.0∼100.0 (100.0 = Rated voltage) F05.01∼F05.05	% Hz	1.0	•
	V1 of multi-point VF Frequency				•
F04.26 a F04.27 c F04.27 c F04.29 c F04.29 c f f F04.30 s s r F05 N F05.00 S F05.01 F r r F05.02 N F05.03 F r r F05.04 N	V1 of multi-point VF Frequency point F2 of				•
F05.03	V1 of multi-point VF Frequency point F2 of multi-point VF Voltage point				•
F05.03	V1 of multi-point VF Frequency point F2 of multi-point VF Voltage point	F05.01~F05.05	Hz	2.00	•

1	1		1	1	
	point F3 of				
	multi-point VF Voltage point				
F05.06	- ·	0.0-100.0	%	10.0	•
1 05.00	multi-point VF	0.0 100.0	70	10.0	•
	r	0: digital setting of VF separation voltage			
	XX 1 .	1: AI1			
	Voltage source	2: AI2			
F05.07	of VF	4: High-frequency pulse (X5)		0	0
	separation mode	5: PID			
	mode	6: Communication setting			
		Note: 100% is the rated voltage of the motor.			
	Digital setting				
F05.08	of VF	0.0-100.0 (100.0 = rated voltage of motor)	%	0.0	•
	separation				
	voltage				
F05.09	Rise time of VF separation	0.00 - 60.00	0	2.00	
F05.09	v F separation voltage	0.00 - 60.00	S	2.00	•
	Compensation				
	gain of V/F				
F05.10	stator voltage	0.00 - 200.00	%	100.00	٠
	drop				
	V/F slip				
F05.11	compensation	0.00 - 200.00	%	100.00	•
	gain				
F05.12	V/F slip	0.00 - 10.00	s	1.00	
F03.12	filtering time	0.00 - 10.00	8	1.00	•
	Oscillation				
F05.13	**	0 - 10000		100	٠
	gain				
	Oscillation				
F05.14	suppression	0.00-600.00	Hz	55.00	•
	cutoff				
	frequency				
F05.15	Droop control	0.00 - 10.00	Hz	0.00	•
	frequency Enorgy saving				
F05.16	Energy saving rate	0.00 - 50.00	%	0.00	•
	Energy saving				
F05.17	action time	1.00 - 60.00	s	5.00	•
	Flux				
F05.18	compensation	0.00~500.00	%	0.00	•
l			l	L	•

	gain of				
	synchronous				
	motor				
	Filtering time				
	constant of				
E05 10	flux	0.00 - 10.00		0.50	
F05.19	compensation	0.00 - 10.00	s	0.50	•
F05.19 F05.20 F06.00 F06.00 F06.02 F06.02 F06.03 F06.03 F06.04 F06.05 F06.05 F06.05 F06.05 F06.05 F06.06 F06.06 F06.06 F06.07 F07 F07 F07 F07 F07 F07 F07 F	of synchronous				
	motor				
F05.19 F05.20 F06.00 F06.01 F06.01 F06.02 F06.03 F06.03 F06.04 F06.05	Change rate of				
E05 20	VF separate	500.0	0/	0.0	_
F05.20	power supply	-500.0~+500.0	%	0.0	•
	setting				
F06	Vector control	parameter group			
	Speed				
F06.00 F06.01	proportional	0.00.100.00		12.00	
F06.00	gain	0.00-100.00		12.00	•
F06.01	ASR_P1				
	Speed integral				
F06.01	time constant	0.000-30.000	s	0.200	•
F06.01	ASR_T1	0.000: no integral			
	Speed				
F06.01 t F06.02 I	proportional	0.00.100.00		0.00	
	gain	0.00-100.00		8.00	•
	ASR_P2				
	Speed integral	0.000.000			
F06.03	time constant	0.000-30.000	s	0.300	•
F06.02 F06.03	ASR_T2	0.000: no integral			
EQC Of	Switching		ŢŢ	5.00	-
r06.04	frequency 1	0.00 to switching frequency 2	Hz	5.00	•
F06.07	Switching			10.00	-
F06.05	frequency 2	Switching frequency 1 to maximum frequency F00.16	Hz	10.00	•
FOCOS	No-load	50.0.200.0	<i>01</i>	100.0	-
FU6.06	current gain	50.0~300.0	%	100.0	•
	Filtering time				
	constant of				
F06.07	speed loop	0.000 - 0.100	s	0.001	•
	output				
D 0 < 0 0	Vector control	50.00.000		100.00	
F06.08	slip gain	50.00-200.00	%	100.00	•
	Upper limit	0: set by F06.10 and F06.11			
F06.09	source	1: AI1		0	0
	selection of	2: AI2			
		-···	I	l	

	speed control	3: retention			
	torque	4: retention			
		5: Communication setting (percentage)			
		6: the larger of AI1 and AI2			
		7: The smaller of AI1 and AI2			
	Upper limit of				
F06.10	speed control	0.0 - 250.0	%	165.0	•
	motor torque				_
E06 11	Upper limit of	0.0.250.0	0/	165.0	-
F06.11	1	0.0 - 250.0	%	165.0	•
	brake torque Excitation				
	current				
F06.12		0.00-100.00		0.50	
E06 13	gain				
	ACR-P1				
	Excitation				
F06.13	current integral	0.00-600.00		10.00	
	time constant	0.00: no integral	ms	10.00	•
	ACR-T1				
	Torque current				
F06.14	proportional	0.00-100.00		0.50	
	gain				
	ACR-P2				_
	Torque current	0.00.000.00			
F06.15	integral time	0.00-600.00	ms	10.00	•
	constant ACR-T2	0.00: no integral			
	SVC	0: braking	-		
F06.17	zero-frequency	1: not processed		2	0
100.17	processing	2: seal the tube		2	
	SVC				
F06.18		50.0-400.0 (100.0 is the no-load current of the motor)	%	100.0	0
	braking current				
	Voltage				
F06.20	feedforward	0 - 100	%	0	•
	gain				
	Flux	0: Invalid			
F06.21		1: direct calculation		2	0
1 00.21	control options			2	
	Â	2: automatic adjustment			
F06.22	Flux	70.00-100.00	%	95.00	•

				1	
	weakening				
	voltage				
	Maximum				
	field				
v F06.23 % F06.24 % F06.25 % F06.25 % F06.26 % F06.27 % F06.28 % F06.29 % F06.29 % F06.29 % F06.30 % F06.30 % F06.31 %	weakening	0.0-150.0 (100.0 is the rated current of the motor)	%	100.0	•
	current of				
	synchronous				
	motor				
	Proportional				
F06.24	gain of flux	0.00 - 10.00		0.50	•
	weakening				
	regulator				
	Integral time				
F06.25	of flux	0.01 - 60.00	s	2.00	•
	weakening				
	regulator				
	MTPA control				
F06.26	option of	0: Invalid		1	0
	synchronous	1: valid			_
F06.26 F06.27	motor				
	Self-learning				
F06.27	gain at initial	0 - 200	%	100	•
F06.27 §	position				
	Frequency of				
	low frequency				
F06.28	band of	0.00-100.00 (100.00 is the rated frequency of the motor)	%	10.00	•
F06.28	injection				
	current				
	Injection			20.0	
F06.29	current of low	0.0-60.0 (100.0 is the rated current of the motor)	%	40.0-(F16.0	•
	frequency band			0=2)	
	Regulator gain				
	of low				
F06.30	frequency band	0.00 - 10.00		0.50	•
	of injection				
	current				
	Regulator				
	integral time of				
E06 21	low frequency	0.00 - 300.00	m .c	10.00	
100.31	band of	0.00 - 500.00	ms	10.00	•
F06.23 F06.24 F06.25 F06.26 F06.27 F06.28 F06.29 F06.30	injection				
	current				
F06.23 F06.24 F06.24 F06.24 F06.25 F06.27 F06.27 F06.28 F06.27 F06.28 F06.29 F06.29 F06.29 F06.29 F06.29 F06.29 F06.29 F06.20	Frequency of	0.00-100.00 (100.00 is the rated frequency of the motor)	%	20.00	•

User Guide of EM730 Series Inverter

0301 0	Juide of Elvi7.	30 Series Inverter			
	high frequency				
	band of				
	injection				
	current				
	Injection				
F06.33	current of high	0.0-30.0 (100.0 is the rated current of the motor)	%	8.0	
	frequency band				-
	Regulator gain				
	of high				
F06.34	-	0.00 - 10.00		0.50	
1 00.0 1	of injection			0.00	-
	current				
	Regulator				-
	integral time of				
	high frequency				
F06.35	band of	0.00 - 300.00	ms	10.00	•
	injection				
	current				
	Magnetic				
F06.36	saturation				
	coefficient of	0.00~1.00		0.75	0
	synchronous	0.00~1.00		0.75	
	motor				
	Stiffness				
F06.37		0~20		12	
F00.57		0~20		12	•
	speed loop Gain				-
	coefficient of				
F06.38		1.00~3.70		3.50	0
F00.38	of synchronous			5.50	0
	motor				
	Error width of				-
	sliding mode				
F06.39	of synchronous	0.005~0.100		0.100	Ο
	-				
	motor Amplitude of				-
	Amplitude of injected				
	-				
F06.40	reactive	0.0~20.0	%	10.0	Ο
	current of				
	synchronous				
	motor	0. ME			_
F06.41	Open-loop	0: VF		0	0
	low-frequency	1: IF			

User	Juide of Elvi7.	30 Series Inverter			
	processing of	2: IF in start and VF in stop			
	synchronous				
	motor				
	Open-loop				
	low-frequency				
E06 42	processing	0.0.500	0/	0.0	\sim
F06.42	range of	0.0 - 50.0	%	8.0	0
	synchronous				
	motor				
F06 42	IF injection	0.0	0/	50.0	
F06.43	current	0.0 - 600.0	%	50.0	0
	Time constant				
F06 44	of pull-in	0.0. (000.0		1.0	~
F06.44	current of	0.0 - 6000.0	ms	1.0	0
	magnetic pole				
	Initial lead				
	angle of	0.0~359.9	0	30.0	0
	magnetic pole				
	Speed tracking				
	proportional				
	gain of	0.00 - 10.00		1.00	0
	synchronous				
	motor				
	Speed tracking				
F06.47	integral gain of	0.00 - 10.00		1.00	
F06.47	synchronous	0.00 - 10.00		1.00	0
	motor				
	Filtering time				
	constant of				
F06.48	speed tracking	0.00 - 10.00	ms	0.40	Ο
	of synchronous				
	motor				
	Speed tracking				
	control				
F06.49	intensity of	1.0 - 100.0		5.0	Ο
	synchronous				
	motor				
	Speed tracking				
	control				
F06.50	threshold of	0.00 - 10.00		0.20	Ο
	synchronous				
	motor				
F06.51	Rise time of	0.010 - 1.000	s	0.020	Ο

1					
	injected active current of synchronous motor				
F06.76	Low-speed correction factor of stator resistor of asynchronous motor	10.0~500.0	%	100.0	•
F06.77	Low speed correction factor of rotor resistor of asynchronous motor	10.0~500.0	%	100.0	•
F06.78	Slip gain switching frequency of asynchronous motor	0.10~Fmax	Hz	5.00	0
F07	Protection fund	ction setting group			
F07.00	Protection shield	E20 * E 13 E05 * E04 E07 E08 0: valid protection 1: shielded protection		0*0 0*000	0
F07.01	Motor				
		0.20 - 10.00		1.00	•
F07.02	overload protection gain Motor overload pre-alarm coefficient	0.20 - 10.00 50 - 100	%	1.00	•
F07.02	protection gain Motor overload pre-alarm		%		•
	protection gain Motor overload pre-alarm coefficient Bus voltage control options Voltage of	50 - 100 Ones place: Instantaneous stop/no-stop function options 0: Invalid 1: deceleration 2: deceleration to stop Tens place: Overvoltage stall function options 0: Invalid	%	80	

User	Juide of EMI/.	30 Series Inverter			
	stop/no-stop operating voltage	= standard bus voltage)			
F07.09	Instantaneous stop/no-stop recovery voltage	Instantaneous stop/no-stop operating voltage to 100.0	%	86.0	•
F07.10	Check time for instantaneous stop/no-stop recovery voltage	0.00-100.00	s	0.50	•
F07.11	Current limit control	0: Invalid 1: limit mode 1 2: limit mode 2		2	0
F07.12	Current limit level	20.0-180.0(100.0 = the rated current of inverter)	%	150.0	•
F07.13	Quick current limit options	0: Invalid 1: valid		0	0
F07.14	Protection retries	0-20; 0: Disable protection retry		0	0
F07.15	Options of digital output action in protection retries	0: no action 1: action		0	0
F07.16	Interval of protection retries	0.01 - 30.00	S	0.50	•
F07.17	Restoration time of protection retries	0.01 - 30.00	s	10.00	•
F07.18	Action option of protection	EOB * EO7 * EO2 EO5 EO5 EO4 0: allow protection retry 1: disable protection retry - <td></td> <td>0 *0 *0000</td> <td>0</td>		0 *0 *0000	0
F07.19	Action option 1 of protection	E2 I E I5 E I5 E I4 E I3 * E08 E07 0: free stop 1: stop according to stop mode		000 00*00	0
F07.20	Action option 2 of protection	E28 E27 * E23 0: free stop 1: stop according to stop mode		00*0	0

User Guide of EM730 Series Inverter

F07.21	Options of load loss protection	0: Invalid 1: valid		0	•
F07.22	Load loss detection level	0.0-100.0	%	20.0	•
F07.23	Load loss detection time	0.0 - 60.0	S	1.0	•
	Options of	0: trip protection, free stop			
F07.24	load loss	1: trip protection, stop according to stop mode		1	0
	protection action	2: Continue to run, with DO status output			
	Motor				
F07.25		0.0-50.0 (reference: maximum frequency F00.16)	%	20.0	•
	detection level				
507.04	Motor			1.0	
F07.26	overspeed detection time	0.0-60.0, 0.0: disable motor overspeed protection	s	1.0	•
	detection time	0: Invalid			
F07.27	AVR function	1: valid		1	0
	07.27 AVR function 07.28 Stall protection detection time 07.29 Stall control	2: automatic			
F07.28	Stall protection	0.0-6000.0(0.0: no stallprotection detection)	s	0.0	0
F07.29	intensity	0 - 100	%	20	0
	Instantaneous				
F07.30	stop/no-stop	0.00 - 300.00	s	20.00	0
	deceleration time				
		E 10 E 13 E 15 E 16 * E 19 E20 *			
F07.32	Action option	0: allow protection retry		000	0
	2 of protection	1: disable protection retry		00000	
	Action option	* * * * * * <i>E09 E1</i> 7			
F07.34	3 of protection	0: allow protection retry		*****00	0
F08	Multi cogmont	1: disable protection retry speed and simple PLC			
100	Multi-segment	speed and simple i De			
F08.00	speed 1	0.00 to maximum frequency F00.16	Hz	0.00	•
F08.01	Multi-segment speed 2	0.00 to maximum frequency F00.16	Hz	5.00	•
F08.02	Multi-segment speed 3	0.00 to maximum frequency F00.16	Hz	10.00	•
F08.03	Multi-segment	0.00 to maximum frequency F00.16	Hz	15.00	

User Guide of EM730 Series Inverter

	speed 4				
F08.04	Multi-segment speed 5	0.00 to maximum frequency F00.16	Hz	20.00	•
F08.05	Multi-segment speed 6	0.00 to maximum frequency F00.16	Hz	25.00	•
F08.06	Multi-segment speed 7	0.00 to maximum frequency F00.16	Hz	30.00	•
F08.07	Multi-segment speed 8	0.00 to maximum frequency F00.16	Hz	35.00	•
F08.08	Multi-segment speed 9	0.00 to maximum frequency F00.16	Hz	40.00	•
F08.09	Multi- speed 10	0.00 to maximum frequency F00.16	Hz	45.00	•
F08.10	Multi-segment speed 11	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.11	Multi-segment speed 12	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.12	Multi-segment speed 13	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.13	Multi-segment speed 14	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.14	Multi-segment speed 15	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.15	Simple PLC running mode	0: stop after a single run1: stop after a limited number of cycles2: run at the last segment after a limited number of cycles3: continuous cycles		0	•
F08.16	Limited number of cycles	1 - 10000		1	•
F08.17	Simple PLC memory options	Ones place: Stop memory options 0: no memory (from the first segment) 1: memory (from the moment of stop) Tens place: Power-down memory options 0: no memory (from the first segment) 1: Memory (from the power-down moment)		0	•
F08.18	Simple PLC time unit	0: s (second) 1: min (minute)		0	•
F08.19	Setting of the first segment	Ones place: Running direction options 0: forward 1: reverse Tens place: Acceleration and deceleration time options 0: acceleration and deceleration time 1		0	•

User C	Juide of EM /.	30 Series Inverter			
		1: acceleration and deceleration time 2			
		2: acceleration and deceleration time 3			
		3: acceleration and deceleration time 4			
	Running time				
F08.20	of the first	0.0 - 6000.0	s/min	5.0	•
	segment				
		Ones place: Running direction options			
		0: forward			
	a	1: reverse			
	Setting of the	Tens place: Acceleration and deceleration time options			
F08.21	second	0: acceleration and deceleration time 1		0	•
	segment	1: acceleration and deceleration time 2			
		2: acceleration and deceleration time 3			
		3: acceleration and deceleration time 4			
	Running time				1
F08.22	-	0.0 - 6000.0	s/min	5.0	
	segment				-
	segment	Ones place: Running direction options			
		0: forward			
		1: reverse			
	Setting of the	Tens place: Acceleration and deceleration time options			
F08.23	third segment	0: acceleration and deceleration time 1		0	•
	uniu segment	1: acceleration and deceleration time 1			
		2: acceleration and deceleration time 2			
		3: acceleration and deceleration time 5			
	Description (inc.	5: acceleration and deceleration time 4			
F08.24	Running time	0.0 - 6000.0		5.0	-
F08.24		0.0 - 6000.0	s/min	5.0	•
	segment				
		Ones place: Running direction options			
		0: forward			
	a	1: reverse			
F08.25	Setting of the	Tens place: Acceleration and deceleration time options		0	•
	fourth segment	0: acceleration and deceleration time 1			
		1: acceleration and deceleration time 2			
		2: acceleration and deceleration time 3			
		3: acceleration and deceleration time 4			
	Running time				
F08.26	of the fourth	0.0 - 6000.0	s/min	5.0	•
	segment				
		Ones place: Running direction options			
E08 27	Setting of the	0: forward		0	
F08.27	fifth segment	1: reverse		0	

User	Juide of EM/.	30 Series Inverter			
		0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3			
		3: acceleration and deceleration time 4			
F08.28	Running time of the fifth segment	0.0 - 6000.0	s/min	5.0	•
F08.29	Setting of the sixth segment	Ones place: Running direction options 0: forward 1: reverse Tens place: Acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.30	Running time of the sixth segment	0.0 - 6000.0	s/min	5.0	•
F08.31	Setting of the seventh segment	Ones place: Running direction options 0: forward 1: reverse Tens place: Acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.32	Running time of the seventh segment	0.0 - 6000.0	s/min	5.0	•
F08.33	Setting of the eighth segment	Ones place: Running direction options 0: forward 1: reverse Tens place: Acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.34	Running time of the eighth segment	0.0 - 6000.0	s/min	5.0	•
F08.35	Setting of the nineth segment	Ones place: Running direction options 0: forward 1: reverse		0	•

2.001					
		Tens place: Acceleration and deceleration time options			
		0: acceleration and deceleration time 1			
		0: acceleration and deceleration time 11: acceleration and deceleration time 22: acceleration and deceleration time 33: acceleration and deceleration time 4tunning time f the ninth egment0.0 - 6000.0enting of the enth segment0: nes place: Running direction options 0: forward 1: reverse0: acceleration and deceleration time 11: acceleration and deceleration time 11: acceleration and deceleration time 11: acceleration and deceleration time 22: acceleration and deceleration time 33: acceleration and deceleration time 4tunning time f the tenth egment0.0 - 6000.0etting of the leventh egment0: acceleration and deceleration time 11: reverseTens place: Running direction options 0: forward 1: reverse0: acceleration and deceleration time 11: acceleration and deceleration time 22: acceleration and deceleration time 33: acceleration and deceleration time 33: acceleration and deceleration time 4tunning time f the eleventh egment0: forward 1: reverseTens place: Acceleration and deceleration time 11: acceleration and deceleration time 11: acceleration and deceleration time 11: acceleration and deceleration time 4tunning time f the eleventh egment0: forward 1: reverseTens place: Acceleration and			
	0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 436Running time of the ninth segment0.0 - 6000.037Setting of the tenth segmentOnes place: Running direction options 0: forward 1: reverse37Setting of the tenth segmentOnes place: Acceleration and deceleration time 0 0: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 438Running time of the tenth segmentOnes place: Running direction options 0: acceleration and deceleration time 438Running time of the tenth segmentOnes place: Running direction options 0: forward 1: reverse39Setting of the eleventh segmentOnes place: Running direction options 0: forward 1: reverse Tens place: Acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 2 2: acceleration and deceleration time 440Running time of the eleventh segmentOnes place: Running direction options 0: forward 1: reverse Tens place: Acceleration time 441Running time twelve segmentOnes place: Running direction options 0: forward 1: reverse Tens place: Acceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 441Running time twelve segmentOnes place: Acceleration time 1 1: accelerat				
		3: acceleration and deceleration time 4			
	Running time				
F08.36	of the ninth	0.0 - 6000.0	s/min	5.0	•
	segment				
	-	Ones place: Running direction options			
		0: forward			
		1: reverse			
F08.37	Setting of the	Tens place: Acceleration and deceleration time options			
F08.37	-	* *		0	•
	Running time				
F08.38	-	0.0 - 6000.0	s/min	5.0	
1 00.50		0.0 - 0000.0	3/ 11111	5.0	
	segment	Ones place: Running direction options			
	e				
F08.39	eleventh	· · · ·		0	•
	segment				
	D	3: acceleration and deceleration time 4			
F 00 40	U	0.0. 5000.0	<i>,</i> .	- 0	
F08.40		0.0 - 6000.0	s/min	5.0	•
	segment				
		· · · ·			
	Setting of the				
F08.41	e			0	
1 00.11		0: acceleration and deceleration time 1		0	
	segment	1: acceleration and deceleration time 2			
		2: acceleration and deceleration time 3			
		3: acceleration and deceleration time 4			
	Ç				
F08.42	of the twelfth	0.0 - 6000.0	s/min	5.0	•
	segment				
					-
F08.43	Setting of the	Ones place: Running direction options		0	

0.501 0	Julie of Elif.	30 Series Inverter			
	segment	1: reverse			
		Tens place: Acceleration and deceleration time options			
		0: acceleration and deceleration time 1			
		1: acceleration and deceleration time 2			
	Tens place: Acceleration and deceleration time option: 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4 Running time of the thirteenth segment 0.0 - 6000.0 Setting of the fourteenth segment 0.1: reverse Tens place: Running direction options 0: forward 1: reverse Tens place: Acceleration and deceleration time option: 0: acceleration and deceleration time 1 1: acceleration and deceleration time 3 3: acceleration and deceleration time 4 Running time of the fourteenth segment 0.0 - 6000.0 Setting of the fifteenth segment 0.0 - 6000.0 Setting of the fifteenth segment 0.0 - 6000.0 0: acceleration and deceleration time 1 1: reverse Tens place: Running direction options 0: forward 1: reverse Tens place: Acceleration and deceleration time 2 <tr< td=""><td></td><td></td><td></td></tr<>				
		3: acceleration and deceleration time 4			
	Running time			5.0 • 5.0 • 5.0 • 5.0 • 0 •	
F08.44 (1) F08.45 (1) F08.45 (1) F08.46 (1) F08.47 (1) F08.47 (1) F08.47 (1) F08.47 (1) F08.47 (1) F08.47 (1) F08.47 (1) F08.47 (1) F08.45	of the	0.0. (000.0		5.0	
	thirteenth	0.0 - 6000.0	s/min	5.0	•
	segment				
		Ones place: Running direction options			
		0: forward			
F08.44 c t s s F08.45 f s F08.46 c f s F08.47 f s F08.47 f s F08.48 c s	G	1: reverse			
E00.45	fourteenth	Tens place: Acceleration and deceleration time options		0	
F08.45		0: acceleration and deceleration time 1		0	•
		1: acceleration and deceleration time 2			
F08.44 9 F08.45 1 F08.46 1 F08.47 1 F08.48 1 F08.48 1 F08.49 1 F08.49 1 F08.40 1 F08.41 1 F08.42 1 F08.43 1 F08.44 1 F08.45 1 F08.46 1 F09.00 1		2: acceleration and deceleration time 3			
		3: acceleration and deceleration time 4	deceleration time 1 deceleration time 2 deceleration time 3 deceleration time 4 g direction options ation and deceleration time options deceleration time 1 deceleration time 3 deceleration time 4 g direction options ation and deceleration time options deceleration time 4 g direction options ation and deceleration time options deceleration time 1 deceleration time 2 deceleration time 2 deceleration time 2 deceleration time 3 deceleration time 3 deceleration time 3 deceleration time 4 g g quency pulse (X5)		
	Running time			0	
F 00.44	of the	0.0		5.0	
F08.46	fourteenth	0.0 - 6000.0	s/min	5.0	•
	segment				
		Ones place: Running direction options			
		0: forward			
	~	1: reverse			
	e	Tens place: Acceleration and deceleration time options			
F08.47		0: acceleration and deceleration time 1		0	•
	segment	1: acceleration and deceleration time 2			
		2: acceleration and deceleration time 3			
Image: Non-State of the segmentImage: Non-State of the thirteenth segmentImage: Non-State of the thirteenth segmentImage: Non-State of the thirteenth segmentF08.44Running time fourteenth segmentNon-State of the fourteenth segmentNon-State of the fourteenth segmentF08.45Running time of the fourteenth segmentNon-State of the fourteenth segmentNon-State of the fourteenth segmentF08.46Running time of the fourteenth segmentNon-State of the fourteenth segmentNon-State of the fourteenth segmentF08.47Setting of the fifteenth segmentNon-State of the fifteenth segmentNon-State of the fifteenth of the fifteenth segmentF08.48Running time of the fifteenth segmentNon-State of the fifteenth of the fifteenth segmentNon-State of the fifteenth of the fifteenth of the fifteenth of the fifteenth segmentF09.00PID setting sourceNon-State of the fifteenth of the fifte	3: acceleration and deceleration time 4				
	Running time			0 5.0 0 5.0 0	
F08.48	of the fifteenth	0.0 - 6000.0	s/min	5.0	•
	segment				
F09	PID function g	roup			
		0: digital PID setting			
F08.46 f s F08.47 f s F08.48 c s F09 I F09.00 F		1: AI1			
		2: AI2			
F09.00	-	3: Reserved		0	0
	source	4: retention			1
		5: PULSE, high-frequency pulse (X5)			
		6: Communication setting			
	Digital PID		1		1
-	Digital PID				

0.501 0	Juide of Elvi7.	30 Series Inverter				
F09.02	PID feedback source	tree4: retention 5: PULSE, high-frequency pulse (X5) 6: Communication settingD setting dback range0.1 - 6000.0D positive 				
F09.03	PID setting feedback range	0.1 - 6000.0		100.0	•	
F09.04	PID positive and negative action selection	<u>^</u>		0	0	
F09.05	Proportional gain 1	0.00-100.00		0.40	•	
F09.06	Integral time 1	0.000 - 30.000, 0.000: no integral	S	2.000	•	
F09.07	Differential time 1	0.000-30.000	ms	0.000	•	
F09.08	Proportional gain 2	0.00-100.00	0.40	•		
F09.09	Integral time 2	0.000 - 30.000, 0.000: no integral	s	2.000	٠	
F09.10	Differential time 2	000-30.000 ms		0.000	•	
F09.11	PID parameter switching conditions	: no switching : switching via digital input terminal : automatic switching according to deviation : Automatic switching by frequency		0	•	
F09.12	PID parameter switching deviation 1	0.00 - F09.13	%	20.00	•	
F09.13	PID parameter switching deviation 2	F09.12 - 100.00 %		80.00	•	
F09.14	Initial PID value	0.00-100.00	%	0.00	•	
F09.15	PID initial value holding time	0.00~650.00	.00~650.00 s		•	
F09.16	Upper limit of PID output	F9.17~+100.0	%	100.0	•	
F09.17	Lower limit of PID output	-100.0~F9.16	%	0.0	•	
F09.18	PID deviation	0.00-100.00 (0.00: invalid)	%	0.00	•	

User Guide of EM730 Series Inverter

	limit				
	PID				
F09.19	differential	0.00-100.00	%	5.00	•
	limit				
	PID integral				
F09.20	e	0.00-100.00 (100.00% = invalid integral separation)	%	100.00	•
	threshold				
-	PID setting				
F09.21	change time	0.000-30.000	s	0.000	•
F00 22	PID feedback	0 000 20 000		0.000	_
F09.22	filtering time	0.000-30.000	S	0.000	•
F00 22	PID output	0 000 20 000		0.000	_
F09.23	filtering time 0.000-30.000		s	0.000	•
	Upper limit				
	detection value				
F09.24	of PID	0.00-100.00; 100.00 = invalid feedback disconnection	%	100.00	•
	9.24 of PID 0.00-100.00; 100.00 = invalid feedback disconnection 9.24 of PID 0.00-100.00; 100.00 = invalid feedback disconnection 9.25 of PID 0.00-100.00; 0.00 = invalid feedback disconnection 9.25 of PID 0.00-100.00; 0.00 = invalid feedback disconnection 9.26 of PID 0.00-100.00; 0.00 = invalid feedback disconnection 9.26 of PID 0.000-30.000				
	disconnection				
	Lower limit				
	detection value				
F09.25	of PID	0.00-100.00; 0.00 = invalid feedback disconnection	%	0.00	•
	feedback				
	disconnection				
	Detection time				
E00.26	of PID	0 000 30 000	0	0.000	
F09.20	feedback	0.000-50.000	S	0.000	•
	disconnection				
		0: Invalid			
F09.27	PID sleep	1: sleep at zero speed		0	
107.27	control options	2: sleep at lower frequency limit		0	•
		3: sleep with tube sealed			
F09.28	Sleep action	0.00-100.00 (100.00 corresponds to the PID setting	%	100.00	•
109.20	point	feedback range)	70	100.00	•
F09.29	Sleep delay	0.0 - 6500.0	s	0.0	•
109.29	time	0.0 0200.0	5	0.0	•
F09.30	Wake-up	0.00-100.00 (100.00 corresponds to the PID setting	%	0.00	•
107.50	action point	feedback range)	70	0.00	
F09.31	Wake-up delay	0.0 - 6500.0	s	0.0	•
107.51	time	0.0 - 0500.0	3	0.0	•
F09.32	Multi-segment	0.0 to PID setting feedback range F09.03		0.0	•
107.32	PID setting 1	store in seams recubick lange i 09.05		0.0	
F09.33	Multi-segment	0.0 to PID setting feedback range F09.03		0.0	
- 07.55	PID setting 2	sis to 1 25 Setting recebuck range 1 09.05		0.0	

User Guide of EM730 Series Inverter

F09.34	Multi-segment PID setting 3	0.0 to PID setting feedback range F09.03		0.0	•
F09.35	Upper limit of feedback voltage	Lower limit of feedback voltage to 10.00	V	10.00	•
F09.36	Lower limit of feedback voltage	0.00 to upper limit of feedback voltage	V	0.00	•
F09.37	Integral action option within set PID change time	 vithin 1: Calculate the integral term after the F09.21 set time is reached 2: Calculate the integral term when the error is less than F09.38 		0 Straight-2	•
F09.38	Integral within set PID change time Input deviation	0.00-100.00	%	0	•
F09.39	Wake-up option	0: target pressure F09.01* coefficient of wake-up action point 1: Wake-up action point (F09.30)		0	0
F09.40	Coefficient of wake-up action point	0.0-100.0 (100% corresponds to PID setting)	%	90.0	•
F09.41	Pipeline network alarm overpressure	0.0 to pressure sensor range F09.03	%	90.0	•
F09.42	Overpressure protection time	0-3600 (0: invalid)	bar	6	•
F09.43	PID reverse limit	0: no limit 1: limit		1	0
F10	Communicatio	n function group			
F10.00	Local Modbus communicatio n address	1-247; 0: broadcast address		1	0
F10.01	Baud rate of Modbus communicatio n	0:4800 1:9600 2:19200 3:38400 4:57600 5:115200		1	0
F10.02	Modbus data	0: $1-8-N-1$ (1 start bit + 8 data bits + 1 stop bit)		0	Ο

User Guide of EM730 Series Inverter

User e	Julue of Elvi7.	50 Series Inverter			
	format	1: 1-8-E-1 (1 start bit + 8 data bits + 1 even parity check bit + 1 stop bit)			\prod
		2: 1-8-O-1 (1 start bit + 8 data bits + 1 odd parity check bit			
		+1 stop bit)			
		3: 1-8-N-2 (1 start bit + 8 data bits + 2 stop bits)			
		4: 1-8-E-2 (1 start bit + 8 data bits + 1 even parity check			
		bit + 2 stop bits)			
		5: 1-8-O-2 (1 start bit $+$ 8 data bits $+$ 1 odd parity check bit			
		+ 2 stop bits)			
	485				
F10.03		0.0s-60.0s; 0.0: invalid (valid for the master-slave mode)	s	0.0	•
	n timeout				
F10.04	Modbus	1 - 20	ms	2	
110.04	response delay	1 - 20	1115	2	•
	Options of				
F10.05	master-slave	0: Invalid		0	0
F10.05	communicatio	1: valid		0	0
	n function				
	Master-slave	0: slave			
F10.06 options		1: host (Modbus protocol broadcast transmission)		0	0
		0: output frequency			
		1: set frequency			
E10.07	Data sent by	2: output torque		1	
F10.07	host	3: set torque		1	0
	nost	4: PID setting			
		5: output current			
	Proportional				
F10.08	factor of slave	0.00-10.00 (multiple)		1.00	•
	reception				
E10.00	Host sending	0 000 20 000		0.000	
F10.09	interval	0.000-30.000	s	0.200	•
	Communicatio				
F10.10	n protocol	0: Modbus-RTU protocol		0	\times
	option	i i i i i i i i i i i i i i i i i i i			
	Options of 485				+ -
F10.56	EEPROM	0-10: default operation (for commissioning)		0	0
	writing	11: writing not triggered (available after commissioning)		÷	Ŭ
	Enabling of				+ +
	SCI sending	0:invalid resetting			
F10.57	timeout	1: valid resetting		1	\bullet
	resetting	1. vanu iesettiing			
E10.59	0	110_10000		150	
F10.58	Delay time of	110~10000	ms	150	•

0.561	Surde of ENT/.	30 Series Inverter			
	SCI sending timeout resetting				
F10.59	SCI response option	0: Reply to both read and write commands 1: Reply to write commands only 2: No reply to both read and write commands		0	0
F11	User-selected p	parameter group (Detail in EM730 User Manual)			
F12	Keyboard and	display function group			
F12.00	M.K multi-function key options	0: no function 1: forward jog 2: reverse jog 3: forward/reverse switching 4: quick stop 5: free stop 6. Cursor left		1	0
F12.01	Options of stop function of STOP key	0: valid only in keyboard control 1: with all command channels valid		1	0
F12.02	Parameter locking	0: do not lock 1: reference input not locked 2: all locked, except for this function code		0	•
F12.03	Parameter copying	0: No operation 1: parameter upload to keyboard 2: Download parameters to inverter		0	0
F12.09	Load speed display coefficient	0.01~600.00		30.00	•
F12.10	UP/DOWN acceleration and deceleration rate	0.00: automatic rate 0.05~500.00Hz/s		5.00Hz/s	0
F12.11	Options of UP/DOWN offset clearing	0: Not clear (clear changes in main frequency setting) 1: clear in non-running state 2: Clear by releasing the UP/DOWN button		0	0
F12.12	Options of UP/DOWN power-down saving of offset	0: do not save 1: save (valid after the offset is modified)		1	0
F12.13	Power meter resetting	0: do not clear 1: clear		0	•
F12.14	Restoration of factory defaults	0: No operation 1: restoration of factory defaults (excluding the motor parameters, inverter parameters, manufacturer parameters, running and power-on time record)		0	0
F12.15	Cumulative	0~65535	h	XXX	\times

User Guide of EM730 Series Inverter

r	I		I	1	
	power-on time (h)				
F12.16	Cumulative power-on time (min)	0 - 59	min	XXX	×
F12.17	Cumulative running time (h)	0~65535	h	XXX	×
F12.18	Cumulative running time (min)	0 - 59	min	XXX	×
F12.19	Rated power of inverter	0.40 - 650.00	kW	Depending on the motor type	×
F12.20	Rated voltage of inverter	60 - 690	V	Depending on the motor type	×
F12.21	Rated current of inverter	0.1 - 1500.0	А	Depending on the motor type	×
F12.22	Performance software S/N 1	XXX.XX		XXX.XX	×
F12.23	Performance software S/N2	XX.XXX		XX.XXX	×
F12.24	Functional software S/N 1	XXX.XX		XXX.XX	×
F12.25	Functional software S/N 2	XX.XXX		XX.XXX	×
F12.26	Keyboard software serial number 1	XXX.XX		XXX.XX	×
F12.27	Keyboard software serial number 2	XX.XXX		XX.XXX	×
F12.28	Serial No. 1	XX.XXX		XX.XXX	×
F12.29	Serial No. 2	XXXX.X		XXXX.X	×
F12.30	Serial No. 3	XXXXX		XXXXX	×
F12.31	LCD language options	0: Chinese 1: English 2: retention		0	•
F12.33	Running status display parameter 1 of Mode 1 (LED stop	0.00 - 99.99		18.00	•

User Guide of EM730 Series Inverter

$\begin{array}{ c c c c c } parameter 5 & & & & \\ \hline parameter 5 & & & \\ \hline Running status \\ display \\ parameter 2 of \\ r12.34 & Mode 1 & & & & \\ (LED stop \\ status display \\ parameter 1 & & & \\ \hline Running status \\ display \\ parameter 3 of \\ (LED stop \\ status display \\ parameter 2 & & \\ Running status \\ display \\ parameter 4 of \\ F12.36 & Mode 1 & & & & & \\ (LED stop \\ status display \\ parameter 4 of \\ F12.36 & Mode 1 & & & & & \\ Running status \\ display \\ parameter 3 & & & \\ Running status \\ display \\ parameter 3 & & \\ Running status \\ display \\ parameter 3 & & \\ Running status \\ display \\ parameter 3 & & \\ Running status \\ display \\ parameter 4 & \\ F12.37 & Mode 1 \\ (LED stop \\ status display \\ parameter 4 & \\ \hline F12.38 & display \\ parameter 1 & & \\ \hline Running status \\ display \\ parameter 1 & \\ \hline \end{array}$		1			
Running status display parameter 1 0 $0.00 - 99.99$ 18.01 F12.34Mode 1 (LED stop status display parameter 1) $0.00 - 99.99$ 18.01 Running status display parameter 3 of (LED stop status display parameter 2) $0.00 - 99.99$ 18.06 F12.35Mode 1 (LED stop status display parameter 4 of (LED stop status display parameter 3) $0.00 - 99.99$ 18.06 F12.36Mode 1 (LED stop status display parameter 3) $0.00 - 99.99$ 18.08 F12.37Mode 1 (LED stop status display parameter 3) $0.00 - 99.99$ 18.08 F12.37Mode 1 (LED stop status display parameter 4) $0.00 - 99.99$ 18.09 F12.38CD large-line parameter 1 $0.00 - 99.99$ 18.00		status display			
		-			
		U			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$	F12.24		0.00.00.00	10.01	
status display parameter 1) Running status display parameter 3 of 0.00 - 99.99 18.06 F12.35 Mode 1 (LED stop status display parameter 2) 0.00 - 99.99 18.06 F12.36 Mode 1 (LED stop status display parameter 4 of (LED stop status display parameter 3) 0.00 - 99.99 18.08 F12.36 Mode 1 (LED stop status display parameter 3) 0.00 - 99.99 18.08 F12.37 Mode 1 (LED stop status display parameter 5 of (LED stop status display parameter 4) 0.00 - 99.99 18.09 F12.38 LCD large-line parameter 1 0.00 - 99.99 18.00			0.00 - 99.99	18.01	•
parameter 1)Image: constraint of the systemRunning status display parameter 3 of0.00 - 99.9918.06F12.35Mode 1 (LED stop status display parameter 2)0.00 - 99.9918.06F12.36Running status display parameter 3)18.0818.08F12.37Mode 1 (LED stop status display parameter 3)0.00 - 99.9918.08F12.37Mode 1 (LED stop status display parameter 4 of0.00 - 99.9918.08F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.38LCD large-line parameter 118.0018.00					
Running status display parameter 3 of $0.00 - 99.99$ 18.06 F12.35Mode 1 (LED stop status display parameter 2) $0.00 - 99.99$ 18.06 F12.36Running status display parameter 3 of $0.00 - 99.99$ 18.08 F12.36Mode 1 (LED stop status display parameter 3) $0.00 - 99.99$ 18.08 F12.37Mode 1 (LED stop status display parameter 3) $0.00 - 99.99$ 18.08 F12.37Running status display parameter 4) 18.09 18.09 F12.38LCD large-line f12.38 $0.00 - 99.99$ 18.00 F12.38display parameter 1 $0.00 - 99.99$ 18.00					
F12.35 Mode 1 (LED stop status display parameter 2) $0.00 - 99.99$ 18.06 Running status display parameter 4 of (LED stop status display parameter 3) $0.00 - 99.99$ 18.08 F12.36 Mode 1 (LED stop status display parameter 3) $0.00 - 99.99$ 18.08 F12.37 Mode 1 (LED stop status display parameter 5 of (LED stop status display parameter 4) $0.00 - 99.99$ 18.09 F12.37 Mode 1 (LED stop status display parameter 4) $0.00 - 99.99$ 18.09 F12.38 LCD large-line parameter 1 $0.00 - 99.99$ 18.00					
F12.35Mode 1 (LED stop status display parameter 2) $0.00 - 99.99$ 18.06 Running status display parameter 4 of F12.36Running status display parameter 4 of (LED stop status display parameter 3) $0.00 - 99.99$ 18.08 F12.37Mode 1 (LED stop status display parameter 5 of (LED stop status display parameter 4) $0.00 - 99.99$ 18.09 F12.37Mode 1 (LED stop status display parameter 4) $0.00 - 99.99$ 18.09 F12.38LCD large-line parameter 1 $0.00 - 99.99$ 18.00					
status display parameter 2)status display parameter 4 ofF12.36Running status display parameter 4 of (LED stop status display parameter 3)0.00 - 99.9918.08F12.37Mode 1 (LED stop status display parameter 5 of (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.38LCD large-line parameter 118.0018.00		^	0.00 - 99.99	18.06	•
status display parameter 2)status display parameter 4 ofF12.36Running status display parameter 4 of (LED stop status display parameter 3)0.00 - 99.9918.08F12.37Mode 1 (LED stop status display parameter 5 of (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.38LCD large-line parameter 118.0018.00		(LED stop			
Running status display parameter 4 of0.00 - 99.9918.08F12.36Mode 1 (LED stop status display parameter 3)0.00 - 99.9918.08F12.37Running status display parameter 5 of (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.38LCD large-line display parameter 118.00					
display parameter 4 of Mode 1 (LED stop status display parameter 3)0.00 - 99.9918.08F12.36Running status display parameter 5 of Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.38LCD large-line parameter 10.00 - 99.9918.00					
parameter 4 of F12.360.00 - 99.9918.08F12.36Mode 1 (LED stop status display parameter 3)0.00 - 99.9918.08F12.37Running status display parameter 5 of (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.38LCD large-line display parameter 118.00		Running status			
F12.36Mode 1 (LED stop status display parameter 3)0.00 - 99.9918.08F12.37Running status display parameter 5 of (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.38LCD large-line parameter 118.00					
(LED stop status display parameter 3)					
status display parameter 3) Running status display parameter 5 of (LED stop status display parameter 4) 0.00 - 99.99 18.09 F12.37 Mode 1 (LED stop status display parameter 4) 0.00 - 99.99 18.09 F12.38 LCD large-line display 0.00 - 99.99 18.00 F12.38 display 0.00 - 99.99 18.00	F12.36		0.00 - 99.99	18.08	٠
parameter 3)Image: constraint of the systemRunning status display parameter 5 of (LED stop status display parameter 4)0.00 - 99.9918.09F12.37Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.38LCD large-line display parameter 118.00					
Running status display parameter 5 of (LED stop status display parameter 4)0.00 - 99.9918.09F12.37LCD large-line display parameter 10.00 - 99.9918.00					
display parameter 5 of Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.37LCD large-line display parameter 10.00 - 99.9918.00					
parameter 5 of Mode 1 (LED stop status display parameter 4)0.00 - 99.9918.09F12.37LCD large-line display parameter 10.00 - 99.9918.00		-			
F12.37 Mode 1 (LED stop status display parameter 4) 0.00 - 99.99 18.09 F12.38 LCD large-line display parameter 1 0.00 - 99.99 18.00		· ·			
(LED stop status display parameter 4) Image: Compare the status display parameter 4) Image: Compare the status display display 0.00 - 99.99 18.00 F12.38 display parameter 1 0.00 - 99.99 18.00	E12 27	*	0.00 00.00	18.00	
status display parameter 4) Image: Constraint of the state of the stateo			0.00 - 99.99	16.09	•
parameter 4) Image: CD large-line display parameter 1 0.00 - 99.99 18.00					
F12.38 LCD large-line display 0.00 - 99.99 18.00					
parameter 1					
	F12.38	display	0.00 - 99.99	18.00	•
I CD Jarge Jine		parameter 1			
		LCD large-line			
F12.39 display 0.00 - 99.99 18.06	F12.39	display	0.00 - 99.99	18.06	•
parameter 2		parameter 2			
LCD large-line		LCD large-line			
F12.40 display 0.00 - 99.99 18.09	F12.40	display	0.00 - 99.99	18.09	•
parameter 3		^			
Options of 0: Invalid			0: Invalid	0	
F12.41 UP/DOWN zero crossing 1: valid 0			1: valid	U	0

User Guide of EM730	Series Inverter
---------------------	-----------------

F12.42	Frequency setting of digital potentiometer	0.00 to maximum	Hz	0.00	×				
F12.43	Digital potentiometer torque setting	0.00- Digital torq	ue setti	ng F13.02	2		%	0.0	×
	UP/DOWN function	Communication	High- speed pulse	Analog quantity	Digital frequency	Multi-segment speed			
F12.45	options of	0	0	0	0	0		00000	Ο
	keyboard	0: Invalid							
		1: valid							
E12	T								
F13	-	parameter group	þ						
F13.00	Speed/torque	0: Speed control						0	0
	control options	1: Torque control							
F13.01	Options of torque setting source	0: digital torque s 1: AI1 2: AI2 3: retention 4: retention 5: high frequency 6: Communicatio 7: retention 8: digital potentio (Full range of the torque setting)	pulse n settir ometer		0	0			
F13.02	Digital torque setting	-200.0 - 200.0		%	100.0	•			
F13.03	Multi-segment torque 1	-200.0 - 200.0	-200.0 - 200.0						•
F13.04	Multi-segment torque 2	-200.0 - 200.0	-200.0 - 200.0						•
F13.05	Multi-segment torque 3	-200.0 - 200.0					%	0.0	•
F13.06	Torque control acceleration and deceleration time	0.00 - 120.00	0.00 - 120.00						•
F13.08	Upper frequency limit	0: set by F13.09 1: AI1		0	0				

	torque control	3: retention				
		4: retention				
		5: high frequency pulse input (X5)				
		6: Communication setting (percentage)				
		7: Communication setting (direct frequency)				
	Positive upper					
F13.09	limit of torque	0.500	Hz		50.00	-
F13.09	control	0.50to maximum frequency F00.16	HZ		30.00	•
	frequency					
	Upper					
F13.10	frequency limit	0.00 to maximum frequency F00.16	Hz		0.00	٠
	offset					
	Static friction					
F13.11	torque	0.0-100.0	%		0.0	•
	compensation					
	Frequency					
E12 10	range of static	0.00 50.00			1.00	
F13.12	friction	0.00 - 50.00	Hz		1.00	•
	compensation					
	Dynamic					
F13.13	friction torque	0.0-100.0	%		0.0	•
	compensation					
F13.18	Reverse speed) - 100			100	
г15.16	limit options	0 - 100	%		100	•
F13.19	Reverse torque	0-1			0	
115.19	control options	0-1			0	
F14	Parameter gro	up of motor 2 (Detail in EM730 User Manual)				
F15	Auxiliary funct	tion group				
F15.00	Jog frequency	0.00 to maximum frequency F00.16	Hz	4	5.00	•
	Jog	0.00 - 650.00 (F15.13=0)				
F15.01	acceleration	0.0 - 6500.0 (F15.13=1)	s	4	5.00	٠
	time	0 - 65000 (F15.13=2)				
	Jog	0.00 - 650.00 (F15.13=0)				
F15.02	deceleration	0.0 - 6500.0 (F15.13=1)	s	4	5.00	•
	time	0 - 65000 (F15.13=2)				
	Acceleration	0.00 - 650.00 (F15.13=0)				
F15.03		0.0 - 6500.0 (F15.13=1)	s	1	5.00	•
	time 2	0 - 65000 (F15.13=2)				
	Deceloration	0.00 - 650.00 (F15.13=0)				
F15.04	Deceleration	0.00 - 650.00 (F15.13=0) 0.0 - 6500.0 (F15.13=1)	s	1	5.00	•
F15.04	Deceleration time 2		s	1	5.00	•
F15.04	time 2	0.0 - 6500.0 (F15.13=1)	s		5.00	•

User Guide of EM730 Series Inverter

	Juide of EMI/.	30 Series Inverter			
		0 - 65000 (F15.13=2)			
F15.06	Deceleration time 3	0.00 - 650.00 (F15.13=0) 0.0 - 6500.0 (F15.13=1) 0 - 65000 (F15.13=2)	s	15.00	•
F15.07	Acceleration time 4	0.00 - 650.00 (F15.13=0) 0.0 - 6500.0 (F15.13=1) 0 - 65000 (F15.13=2)	s	15.00	•
F15.08	Deceleration time 4	0.00 - 650.00 (F15.13=0) 0.0 - 6500.0 (F15.13=1) 0 - 65000 (F15.13=2)	s	15.00	•
F15.09	Fundamental frequency of acceleration and deceleration time	0: maximum frequency F00.16 1: 50.00Hz 2: set frequency		0	0
F15.10	Automatic switching of acceleration and deceleration time	0: Invalid 1: valid		0	0
F15.11	Switching frequency of acceleration time 1 and 2	0.00 to maximum frequency F00.16	Hz	0.00	•
F15.12	Switching frequency of deceleration time 1 and 2	0.00 to maximum frequency F00.16	Hz	0.00	•
F15.13	Acceleration and deceleration time unit	0:0.01s 1:0.1s 2:1s		0	0
F15.14	Frequency hopping point 1	0.00-600.00	Hz	600.00	•
F15.15	Hopping range 1	0.00-20.00, 0.00 is invalid	Hz	0.00	•
F15.16	Frequency hopping point 2	0.00-600.00	Hz	600.00	•
F15.17	Hopping range	0.00-20.00, 0.00 is invalid	Hz	0.00	•

	2				
F15.18	Frequency hopping point 3	0.00-600.00	Hz	600.00	•
F15.19	Hopping range 3	0.00-20.00, 0.00 is invalid	Hz	0.00	•
F15.20	Detection width of output frequency arrival (FAR)	0.00 - 50.00	Hz	2.50	0
F15.21	Output frequency detection FDT1	0.00 to maximum frequency F00.16	Hz	30.00	0
F15.22	FDT1 hysteresis	-(Fmax-F15.21)~F15.21	Hz	2.00	0
F15.23	Output frequency detection FDT2	0.00 to maximum frequency F00.16	Hz	20.00	0
F15.24	FDT2 hysteresis	-(Fmax-F15.23)~F15.23	Hz	2.00	0
F15.25	Options of analog level detection ADT	0:AI1 1: AI2		0	0
F15.26	Analog level detection ADT1	0.00-100.00	%	20.00	•
F15.27	ADT1 hysteresis	0.00 to F15.26 (valid down in one direction)	%	5.00	•
F15.28	Analog level detection ADT2	0.00-100.00	%	50.00	•
F15.29	ADT2 hysteresis	0.00 to F15.28 (valid down in one direction)	%	5.00	•
F15.30	Options of energy consumption braking function	0: Invalid 1: valid		0	0
F15.31	Energy consumption braking voltage	110.0-140.0 (380V, 100.0 = 537V)	%	125.0	0
F15.32	Braking rate	20-100 (100 means that duty ratio is 1)	%	100	٠
F15.33	Operating	0: running at the lower frequency limit		0	0

User Guide of EM730 Series Inverter

		50 Series niverter			
	mode with set	1: Shutdown			
	frequency less	2: zero-speed running			
	than lower				
	frequency limit				
		0: running after power-on			
F15.34	Fan control	1: running at startup		1	0
		2: intelligent operation, subject to temperature control			
F15.35	Overmodulatio n intensity	1.00 - 1.10		1.05	•
	Switching				
	options of	0. invalid (7 comment DWM modulation)			
F15.36	PWM	0: invalid (7-segment PWM modulation)		0	0
	modulation	1: valid (5-segment PWM modulation)			
	mode				
	Switching				
	frequency of				
F15.37	PWM	0.00 to maximum frequency F00.16	Hz	15.00	•
	modulation				
	mode				
	Options of				
F15 2 0	dead zone	0: no compensation			
F15.38	compensation	1: compensation mode 1		1	0
	mode	2: compensation mode 2			
F1 5 00	Terminal jog	0: Invalid		0	
F15.39	priority	1: valid		0	0
	Deceleration	0.00 - 650.00 (F15.13=0)			
F15.40	time for quick	0.0 - 6500.0 (F15.13=1)	s	1.00	•
	stop	0 - 65000 (F15.13=2)			
	Overcurrent				
F15.66	detection level	0.1-300.0 (0.0: no detection; 100.0%: corresponding to the	%	200.0	•
	detection lever	rated current of motor)			
	Overcurrent				
F15.67	detection delay	0.00-600.00	s	0.00	•
	time				
F15.68	Market price	0.00-100.00		1.00	0
F15.69	Power-frequen cy load factor	30.0-200.0	%	90.0	0
F16	-	function group			_
		0: Universal model			T
		1: Water supply application			
F16.00	Industry	2: Air compressor application		0	0
1 10.00	application	3: Winding application		U U	
		4: fan application			
L		1. Iun application	1		1

		5: Spindle application of machine tool6: Extruder application7: High-speed motor application			
F16.01	Set length	1 - 65535 (F16.13=0) 0.1 - 6553.5 (F16.13=1) 0.01 - 655.35 (F16.13=2) 0.001 - 65.535 (F16.13=3)	m	1000	•
F16.02	Pulses per meter	0.1 - 6553.5		100.0	•
F16.03	Set count value	F16.04 - 65535		1000	•
F16.04	Specified count value	1 - F16.03		1000	•
F16.05	Set time of regular running	0.0-6500.0, 0.0 is invalid	min	0.0	•
F16.06	Agent password	0~65535		0	•
F16.07	Setting of cumulative power-on arrival time	0-65535; 0: disable the protection when the power-on time is up	h	0	•
F16.08	Setting of cumulative running arrival time	0-65535; 0: disable the protection when the running time is up	h	0	•
F16.09	Factory password	0~65535		XXXX	•
F16.10	Analog output percentage corresponding to the count value 0	0.00-100.00	%	0.00	0
F16.11	Analog output percentage corresponding to the set count value	0.00-100.00	%	100.00	0
F16.13	Set length resolution	0:1m 1:0.1m 2:0.01 m 3:0.001m		0	0

F17	Virtual I/O fu	nction gr	oup (Detail	in EM730 U	J ser Manua l)			
F18	Monitoring pa	rameter	group						
F18.00	Output frequency	0.00 to u	ipper freque	ency limit			Hz	XXX	×
F18.01	Set frequency	0.00 to r	naximum fr	equency F00.	.16		Hz	XXX	×
F18.03	Estimate feedback frequency	0.00 to u	ipper freque	ency limit			Hz	XXX	×
F18.04	Output torque	-200.0 -	200.0				%	XXX	×
F18.05	· ·	-200.0 -	200.0				%	XXX	×
F18.06	Output current		0 to 650.00 (rated power of motor: ≤ 75 kW) to 6500.0 (rated power of motor: > 75 kW)					XXX	×
F18.07	Output current percentage	0.0-300.	0(100.0 = t)	he rated curre	r)	%	0	×	
F18.08	Output voltage	0.0 - 690	0.0				V	XXX	\times
F18.09	DC bus voltage	0 - 1200	1				v	XXX	×
F18.10	Simple PLC running times	0 - 1000	0					XXX	×
F18.11	Simple PLC operation stage	1 - 15	- 15					XXX	×
F18.12	PLC running time at the current stage	0.0 - 600	0.0					XXX	×
F18.14	-	0~65535	5				rpm	XXX	×
F18.15	UP/DOWN			m frequency 1	F00.16		Hz	XXX	×
F18.16	PID setting	0.0 to PI	D maximur	n range				XXX	×
F18.17	-		D maximur					XXX	×
F18.18	Power meter: MWh	0~65535					MWh	XXX	×
F18.19	Watt-hour meter: kWh	0.0 - 999	9.9				kWh	XXX	×
F18.20	Output power	-650.00-	~650.00				kW	XXX	×
F18.21	Output power factor	-1.000 -	1.000 - 1.000					XXX	×
	Digital input	X5	X4	X3	X2	X1			
F18.22	terminal status 1	0/1	0/1	0/1	0/1	0/1		XXX	×
F18.23	Digital input terminal status	*	AI2 0/1	AI1 0/1	*	* 0/1	-	XXX	×

User Guide of EM730 Series Inverter

	2								
	Output	*	*	R1	*	Y1			
F18.25	terminal state	*	*	0/1	*	0/1		XXX	×
F18.26	AI1	0.0-100.	0		•		%	XXX	\times
F18.27	AI2	0.0-100.	0				%	XXX	\times
	High-frequenc								
F18.31	y pulse input frequency: kHz	0.00-100	0.00				kHz	XXX	×
F18.32	High-frequenc y pulse input frequency: Hz	0~65535	5				Hz	XXX	×
F18.33	Count value	0~65535	5					XXX	×
F18.34	Actual length	0~65535	5				m	XXX	×
F18.35	Remaining time of regular running	0.0 - 650	0.00				min	XXX	×
F18.36	Rotor position of synchronous motor	0.0~359	.9°					XXX	×
F18.39	VF separation target voltage	0 - 690					v	XXX	×
F18.40	VF separation output voltage	0 - 690					v	XXX	×
F18.51	PID output	-100.0 -	100.0				%		×
F18.60	Inverter temperature	-40 to 20	00				°C	0	×
F18.67	Saved electric energy (MWH)	Cumulat	tive energy s	aving MWH			0~65535	MWh	×
F18.68	Saved electric energy (KWH)	Cumula	tive energy s	aving KWH			$0.0\sim$ 999.9	kWh	×
F18.69	Saved electric charge (1,000 yuan)	High cu	mulative cos	st saving (*10	00)		0~65535		×
F18.70	Saved electric charge (yuan)	Low cur	nulative cos	t saving			$0.0\sim$ 999.9		×
F18.71	Power-frequen cy power consumption MWh	Power-fr	requency po	wer consump	tion MWH		0~65535	MWh	×
F18.72	Power-frequen	Power-fi	requency po	wer consump	tion KWH		$0.0\sim$	kWh	×

	cy power		999.9		
	consumption KWh				
F19	Protection rec	ord group			
,	Trottection rec	0: No protection			
		E01: output short circuit protection			
		E02: instantaneous overcurrent			
		E02: Instantaleous overcurrent			
		E05: Overvoltage			
		E06: Undervoltage			
		E07: input phase loss			
		E08: output phase loss			
		E09: inverter overload			
		E10: inverter overheat protection			
		E11: Parameter setting conflict			
		E13: motor overload			
		E14: External protection			
	Category of	E15: inverter memory protection			
		E15: inverter memory protection E16: communication abnormality			
F19.00		E17: Temperature sensor abnormality		0	>
17.00	last protection	E18: Abnormal disconnection of soft start relay		0	Í
		E19: current detection circuit abnormality			
		E20: Stall protection			
		E21: PID feedback disconnection			
		E22: retention			
		E24: parameter identification abnormality			
		E25: retention			
		E26: Load loss protection			
		E27: up to the cumulative power-on time			
		E28: up to the cumulative running time			
		E43: Material cutoff protection			
		E44: Cable protection			
		E57: Overpressure in pipeline network			
		E58: Under-pressure in pipeline network			
		E76: Short-circuit protection to ground			
	Output	5			
F19.01	frequency in	0.00 to upper frequency limit	Hz	0.00	>
/	protection				Í
	Output current	0.00 to 650.00 (rated power of motor: \leq 75 kW)			+
F19.02	in protection	0.0 to 6500.0 (rated power of motor: > 75 kW)	А	0.00	>
	Bus voltage in	· * · ·			+
F19.03	protection	0 - 1200	v	0	>
F19.04		0: not running		0	>

		30 Series Inverter			
	status in	1: forward acceleration			
	protection	2: reverse acceleration			
		3: forward deceleration			
		4: reverse deceleration			
		5: constant speed in forward running			
		6: reverse constant speed in reverse running			
F19.05	Working time		h	0	
F19.05	in protection		n	0	×
	Category of				
F19.06	previous	Same as F19.00 parameter description		0	×
	protection				
	Output				1
F19.07	frequency in		Hz	0.00	×
	protection				
	Output current				+
F19.08	in protection		Α	0.00	×
	Bus voltage in				+
F19.09	protection		V	0	\times
	Operating				
F19 10	status in	Same as F19.04 parameter description		0	×
117.10	protection	build us r 19.6 (parameter description		0	\sim
	Working time				-
F19.11	in protection		h	0	\times
	Category of			-	+
F19 12	two previous	Same as F19.00 parameter description		0	×
11).12	protections	bane as i 19.00 parameter description		0	^
	Output				+
F19 13	frequency in		Hz	0.00	×
117.15	protection		112	0.00	^
	Output current				-
F19.14	in protection		А	0.00	\times
	Bus voltage in				+
F19.15	protection		V	0	\times
	*				_
F19.16	Operating status in	Same as E10.04 momentar description		0	
F19.10		Same as F19.04 parameter description		0	×
	protection				+
F19.17	Working time		h	0	\times
-	in protection				
F27	Winding/unwi	nding application macro parameter group			-
		0: Winding mode			
F27.00	Application	1: Unwinding mode		0	0
_	macro	2: Wire drawing mode			
	1	3: Straight wire drawing machine mode			

User Guide of EM730 Series Inverter

User	Juide of EMI/	30 Series Inverter			
F27.01	Feedforward gain action channel	0: feedforward gain * set source B 1: Feedforward gain * set source A 2: Feedforward gain * 10V		1	0
F27.02	Feedforward gain input mode	 0: No change in feedforward gain 1: 0.00 to upper limit of feedforward gain 2: - upper limit of feedforward gain to + upper limit of feedforward gain 		1	0
F27.03	Feedforward control	Ones place: Feedforward reset option 0: Automatic reset 1: Terminal reset Tens place: Feedforward power-off stop option 0: Save after power failure 1: Not save after power failure Hundreds place: Options of continuous feedforward calculation 0: Not calculate 1: Calculate		10	0
F27.04	Upper limit of feedforward gain	0.00~500.00	%	500.00	0
F27.05	Initial feedforward gain	0.00~500.00	%	50.00	•
F27.06	Feedforward gain filter time	0~1000	ms	0	•
F27.07	Feedforward range 0	0.00 to feedforward range 1	%	4.00	•
F27.08	Feedforward range 1	Feedforward range 0 to feedforward range 2	%	12.00	•
F27.09	Feedforward range 2	Feedforward range 1 to feedforward range 3	%	23.00	•
F27.10	Feedforward range 3	Feedforward range 2 to feedforward range 4	%	37.00	•
F27.11	Feedforward range 4	Feedforward range 3 to feedforward range 5	%	52.00	•
F27.12	Feedforward range 5	Feedforward range 4 to 100.00	%	72.00	•
F27.13	Soft start increment	0.00 - 50.00	%/S	0.60	•
F27.14	Feedforward increment 1	0.00 - 50.00	%/S	0.11	•
F27.15	Feedforward increment 2	0.00 - 50.00	%/S	0.30	•
-					

User Guide of EM730 Series Inverter

F27.16	Feedforward increment 3	0.00 - 50.00	%/S	0.75	•
F27.17	Feedforward increment 4	0.00 - 50.00	%/S	1.55	•
F27.18	Feedforward increment 5	0.00 - 50.00	%/S	4.00	•
F27.19	Feedforward increment 6	0.00 - 50.00	%/S	11.00	•
F27.20	Material cutoff control mode	Ones place: Disconnection detection mode 0: Automatic detection 1: External signal Tens place: Material cutoff detection control 0: Detect when the output is greater than the lower limit of material cutoff detection 1: no detection Hundreds place: Material cutoff handling mode 0: Protection of terminal action only 1: Delayed stop and trip protection 2: Material cutoff protection 3: Automatic reset after protection shutdown 4: Material cutoff detection terminal output only (straight wire drawing machine) 5: Automatic reset of cutoff detection terminal (straight wire drawing machine) Thousands place: Brake mode 0: mode 0 1: mode 1 Myriabit: Reverse unwinding mode 0: No speed limit 1: Reverse speed limit by F27.24		01201	0
F27.21	Material cutoff detection delay	0.0~10.0	S	6.0	•
F27.22	Lower limit of material cutoff detection after parking		Hz	5.00	•
F27.23	Time of continuous running after material cutoff	0.0 - 60.0	S	10.0	•
F27.24	Frequency of continuous	0.00~Fmax	Hz	5.00	•

User Guide of EM730 Series Inverter

	running after material cutoff				
F27.25	Brake signal output frequency	0.00~FUP	Hz	2.50	•
F27.26	Braking signal duration	0.0-100.0	S	5.0	•
F27.27	Minimum frequency of wiring	0.00~20.00	Hz	10.00	•
	detection				
	Judgment time				
F27.28	for invalid	0.1 - 20.0	S	10.0	٠
	cable signal				
F27.29	Judgment time for valid cable signal		S	2.0	•
F27.30	Filtering time for material cutoff detection	1~100	ms	5	•
F27.36	Current value of feedforward gain	-500.0~500.0	%		×